L(s) = 1 | − 2·4-s − 5·13-s + 4·16-s − 5·25-s + 4·31-s + 11·37-s − 13·43-s + 10·52-s + 13·61-s − 8·64-s − 16·67-s − 17·73-s + 17·79-s − 14·97-s + 10·100-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯ |
L(s) = 1 | − 4-s − 1.38·13-s + 16-s − 25-s + 0.718·31-s + 1.80·37-s − 1.98·43-s + 1.38·52-s + 1.66·61-s − 64-s − 1.95·67-s − 1.98·73-s + 1.91·79-s − 1.42·97-s + 100-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 159201 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 159201 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.6792780783\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6792780783\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
| 19 | \( 1 \) |
good | 2 | \( 1 + p T^{2} \) |
| 5 | \( 1 + p T^{2} \) |
| 11 | \( 1 + p T^{2} \) |
| 13 | \( 1 + 5 T + p T^{2} \) |
| 17 | \( 1 + p T^{2} \) |
| 23 | \( 1 + p T^{2} \) |
| 29 | \( 1 + p T^{2} \) |
| 31 | \( 1 - 4 T + p T^{2} \) |
| 37 | \( 1 - 11 T + p T^{2} \) |
| 41 | \( 1 + p T^{2} \) |
| 43 | \( 1 + 13 T + p T^{2} \) |
| 47 | \( 1 + p T^{2} \) |
| 53 | \( 1 + p T^{2} \) |
| 59 | \( 1 + p T^{2} \) |
| 61 | \( 1 - 13 T + p T^{2} \) |
| 67 | \( 1 + 16 T + p T^{2} \) |
| 71 | \( 1 + p T^{2} \) |
| 73 | \( 1 + 17 T + p T^{2} \) |
| 79 | \( 1 - 17 T + p T^{2} \) |
| 83 | \( 1 + p T^{2} \) |
| 89 | \( 1 + p T^{2} \) |
| 97 | \( 1 + 14 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.21878592788528, −13.01256611296387, −12.30557931253132, −11.82757566383845, −11.64594163018305, −10.82177097661674, −10.16987273015425, −9.967090694850236, −9.457052413142937, −9.108312438570539, −8.362185664299306, −8.016194634291997, −7.607364858381222, −6.960947153058113, −6.422617411883077, −5.729363188684800, −5.361555618854692, −4.684480433798374, −4.411434838184895, −3.813849826721663, −3.098202235689186, −2.594847932338125, −1.853094838402834, −1.091910029114458, −0.2685603309754153,
0.2685603309754153, 1.091910029114458, 1.853094838402834, 2.594847932338125, 3.098202235689186, 3.813849826721663, 4.411434838184895, 4.684480433798374, 5.361555618854692, 5.729363188684800, 6.422617411883077, 6.960947153058113, 7.607364858381222, 8.016194634291997, 8.362185664299306, 9.108312438570539, 9.457052413142937, 9.967090694850236, 10.16987273015425, 10.82177097661674, 11.64594163018305, 11.82757566383845, 12.30557931253132, 13.01256611296387, 13.21878592788528