Properties

Label 2-39e2-1.1-c1-0-11
Degree $2$
Conductor $1521$
Sign $1$
Analytic cond. $12.1452$
Root an. cond. $3.48500$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s − 5-s − 2·7-s − 3·8-s − 10-s − 2·11-s − 2·14-s − 16-s + 7·17-s + 6·19-s + 20-s − 2·22-s + 6·23-s − 4·25-s + 2·28-s + 29-s − 4·31-s + 5·32-s + 7·34-s + 2·35-s − 37-s + 6·38-s + 3·40-s + 9·41-s + 6·43-s + 2·44-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s − 0.447·5-s − 0.755·7-s − 1.06·8-s − 0.316·10-s − 0.603·11-s − 0.534·14-s − 1/4·16-s + 1.69·17-s + 1.37·19-s + 0.223·20-s − 0.426·22-s + 1.25·23-s − 4/5·25-s + 0.377·28-s + 0.185·29-s − 0.718·31-s + 0.883·32-s + 1.20·34-s + 0.338·35-s − 0.164·37-s + 0.973·38-s + 0.474·40-s + 1.40·41-s + 0.914·43-s + 0.301·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1521 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1521 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1521\)    =    \(3^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(12.1452\)
Root analytic conductor: \(3.48500\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1521,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.547960456\)
\(L(\frac12)\) \(\approx\) \(1.547960456\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
13 \( 1 \)
good2 \( 1 - T + p T^{2} \)
5 \( 1 + T + p T^{2} \)
7 \( 1 + 2 T + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
17 \( 1 - 7 T + p T^{2} \)
19 \( 1 - 6 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 - T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 + T + p T^{2} \)
41 \( 1 - 9 T + p T^{2} \)
43 \( 1 - 6 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 - 9 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - T + p T^{2} \)
67 \( 1 - 2 T + p T^{2} \)
71 \( 1 - 6 T + p T^{2} \)
73 \( 1 + 11 T + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 + 14 T + p T^{2} \)
89 \( 1 + 14 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.558473892030481203985778352711, −8.735214620811791573472916819842, −7.71658128317635772044098375577, −7.14815973994257176177139611517, −5.72247827094712758835446236838, −5.51771431794038684899397428080, −4.35432160798577722940495387148, −3.43785795084203303360022599835, −2.87973753020785058341151880462, −0.797230033462306644168187515692, 0.797230033462306644168187515692, 2.87973753020785058341151880462, 3.43785795084203303360022599835, 4.35432160798577722940495387148, 5.51771431794038684899397428080, 5.72247827094712758835446236838, 7.14815973994257176177139611517, 7.71658128317635772044098375577, 8.735214620811791573472916819842, 9.558473892030481203985778352711

Graph of the $Z$-function along the critical line