L(s) = 1 | + (1.36 + 0.366i)2-s + (0.866 + 0.5i)4-s + (1 − i)5-s + (1.73 − i)10-s + (−0.366 + 1.36i)11-s + (−0.499 − 0.866i)16-s + (1.36 − 0.366i)20-s + (−1 + 1.73i)22-s − i·25-s + (−0.366 − 1.36i)32-s + (−1.36 − 0.366i)41-s + (1.73 + i)43-s + (−1 + 0.999i)44-s + (−1 − i)47-s + (−0.866 + 0.5i)49-s + (0.366 − 1.36i)50-s + ⋯ |
L(s) = 1 | + (1.36 + 0.366i)2-s + (0.866 + 0.5i)4-s + (1 − i)5-s + (1.73 − i)10-s + (−0.366 + 1.36i)11-s + (−0.499 − 0.866i)16-s + (1.36 − 0.366i)20-s + (−1 + 1.73i)22-s − i·25-s + (−0.366 − 1.36i)32-s + (−1.36 − 0.366i)41-s + (1.73 + i)43-s + (−1 + 0.999i)44-s + (−1 − i)47-s + (−0.866 + 0.5i)49-s + (0.366 − 1.36i)50-s + ⋯ |
Λ(s)=(=(1521s/2ΓC(s)L(s)(0.999−0.0386i)Λ(1−s)
Λ(s)=(=(1521s/2ΓC(s)L(s)(0.999−0.0386i)Λ(1−s)
Degree: |
2 |
Conductor: |
1521
= 32⋅132
|
Sign: |
0.999−0.0386i
|
Analytic conductor: |
0.759077 |
Root analytic conductor: |
0.871250 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1521(1432,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1521, ( :0), 0.999−0.0386i)
|
Particular Values
L(21) |
≈ |
2.427140141 |
L(21) |
≈ |
2.427140141 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 13 | 1 |
good | 2 | 1+(−1.36−0.366i)T+(0.866+0.5i)T2 |
| 5 | 1+(−1+i)T−iT2 |
| 7 | 1+(0.866−0.5i)T2 |
| 11 | 1+(0.366−1.36i)T+(−0.866−0.5i)T2 |
| 17 | 1+(0.5+0.866i)T2 |
| 19 | 1+(−0.866+0.5i)T2 |
| 23 | 1+(0.5−0.866i)T2 |
| 29 | 1+(−0.5+0.866i)T2 |
| 31 | 1−iT2 |
| 37 | 1+(−0.866−0.5i)T2 |
| 41 | 1+(1.36+0.366i)T+(0.866+0.5i)T2 |
| 43 | 1+(−1.73−i)T+(0.5+0.866i)T2 |
| 47 | 1+(1+i)T+iT2 |
| 53 | 1+T2 |
| 59 | 1+(1.36−0.366i)T+(0.866−0.5i)T2 |
| 61 | 1+(−0.5−0.866i)T2 |
| 67 | 1+(0.866+0.5i)T2 |
| 71 | 1+(−0.366−1.36i)T+(−0.866+0.5i)T2 |
| 73 | 1+iT2 |
| 79 | 1+T2 |
| 83 | 1+(1−i)T−iT2 |
| 89 | 1+(−0.366+1.36i)T+(−0.866−0.5i)T2 |
| 97 | 1+(−0.866+0.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.627295815795258291399525624070, −9.010093944693941763344673284335, −7.87894053040409549726745463023, −6.95226163330634574248551785687, −6.16528671611276756694382475602, −5.31946055384630044631537323867, −4.84672972981776856958144039799, −4.07800100687861798798968593928, −2.75928812159246748507520268650, −1.66788522944546560811375725694,
1.93216772732673882481633639646, 2.94371747653891445625218477173, 3.41862342013857292150232990428, 4.66548507964020217502891770608, 5.61110077237492478153073272798, 6.10024487046170048702413973472, 6.79381963602542819335994620996, 8.009555252667046027492794295819, 8.937656671001005100145853633412, 9.880872982848770537550837972148