L(s) = 1 | + (1 − i)2-s − i·4-s + (−1 + i)5-s + 2i·10-s + (1 + i)11-s + 16-s + (1 + i)20-s + 2·22-s − i·25-s + (1 − i)32-s + (−1 + i)41-s − 2i·43-s + (1 − i)44-s + (1 + i)47-s − i·49-s + (−1 − i)50-s + ⋯ |
L(s) = 1 | + (1 − i)2-s − i·4-s + (−1 + i)5-s + 2i·10-s + (1 + i)11-s + 16-s + (1 + i)20-s + 2·22-s − i·25-s + (1 − i)32-s + (−1 + i)41-s − 2i·43-s + (1 − i)44-s + (1 + i)47-s − i·49-s + (−1 − i)50-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1521 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.957 + 0.289i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1521 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.957 + 0.289i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.676054035\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.676054035\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-1 + i)T - iT^{2} \) |
| 5 | \( 1 + (1 - i)T - iT^{2} \) |
| 7 | \( 1 + iT^{2} \) |
| 11 | \( 1 + (-1 - i)T + iT^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 - iT^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 - iT^{2} \) |
| 37 | \( 1 + iT^{2} \) |
| 41 | \( 1 + (1 - i)T - iT^{2} \) |
| 43 | \( 1 + 2iT - T^{2} \) |
| 47 | \( 1 + (-1 - i)T + iT^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 + (1 + i)T + iT^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 - iT^{2} \) |
| 71 | \( 1 + (1 - i)T - iT^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + (-1 + i)T - iT^{2} \) |
| 89 | \( 1 + (1 + i)T + iT^{2} \) |
| 97 | \( 1 - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.02635070076401819652027012716, −8.949432082028980492138583646302, −7.84477301945013166274032704027, −7.14977543470036483781347895672, −6.37207147450831222010923368968, −5.14149409566546238989746991570, −4.21864583562343619871079672453, −3.68363712050568623108998423535, −2.81645471924645602486310125732, −1.72380868001794991272043699220,
1.14579219106845792076663418929, 3.27477425483719994674335466637, 4.06493804663884689961184578365, 4.66352069707040162174770065308, 5.59253313514255286898143936021, 6.31019007411589990166802500253, 7.19290765409074862744117176310, 7.984447783007730916841923059948, 8.627780332323383978289809631682, 9.375520392993560886578239447786