Properties

Label 2-39e2-13.5-c0-0-1
Degree $2$
Conductor $1521$
Sign $0.957 + 0.289i$
Analytic cond. $0.759077$
Root an. cond. $0.871250$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1 − i)2-s i·4-s + (−1 + i)5-s + 2i·10-s + (1 + i)11-s + 16-s + (1 + i)20-s + 2·22-s i·25-s + (1 − i)32-s + (−1 + i)41-s − 2i·43-s + (1 − i)44-s + (1 + i)47-s i·49-s + (−1 − i)50-s + ⋯
L(s)  = 1  + (1 − i)2-s i·4-s + (−1 + i)5-s + 2i·10-s + (1 + i)11-s + 16-s + (1 + i)20-s + 2·22-s i·25-s + (1 − i)32-s + (−1 + i)41-s − 2i·43-s + (1 − i)44-s + (1 + i)47-s i·49-s + (−1 − i)50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1521 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.957 + 0.289i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1521 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.957 + 0.289i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1521\)    =    \(3^{2} \cdot 13^{2}\)
Sign: $0.957 + 0.289i$
Analytic conductor: \(0.759077\)
Root analytic conductor: \(0.871250\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{1521} (577, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1521,\ (\ :0),\ 0.957 + 0.289i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.676054035\)
\(L(\frac12)\) \(\approx\) \(1.676054035\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
13 \( 1 \)
good2 \( 1 + (-1 + i)T - iT^{2} \)
5 \( 1 + (1 - i)T - iT^{2} \)
7 \( 1 + iT^{2} \)
11 \( 1 + (-1 - i)T + iT^{2} \)
17 \( 1 - T^{2} \)
19 \( 1 - iT^{2} \)
23 \( 1 - T^{2} \)
29 \( 1 + T^{2} \)
31 \( 1 - iT^{2} \)
37 \( 1 + iT^{2} \)
41 \( 1 + (1 - i)T - iT^{2} \)
43 \( 1 + 2iT - T^{2} \)
47 \( 1 + (-1 - i)T + iT^{2} \)
53 \( 1 + T^{2} \)
59 \( 1 + (1 + i)T + iT^{2} \)
61 \( 1 + T^{2} \)
67 \( 1 - iT^{2} \)
71 \( 1 + (1 - i)T - iT^{2} \)
73 \( 1 + iT^{2} \)
79 \( 1 + T^{2} \)
83 \( 1 + (-1 + i)T - iT^{2} \)
89 \( 1 + (1 + i)T + iT^{2} \)
97 \( 1 - iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.02635070076401819652027012716, −8.949432082028980492138583646302, −7.84477301945013166274032704027, −7.14977543470036483781347895672, −6.37207147450831222010923368968, −5.14149409566546238989746991570, −4.21864583562343619871079672453, −3.68363712050568623108998423535, −2.81645471924645602486310125732, −1.72380868001794991272043699220, 1.14579219106845792076663418929, 3.27477425483719994674335466637, 4.06493804663884689961184578365, 4.66352069707040162174770065308, 5.59253313514255286898143936021, 6.31019007411589990166802500253, 7.19290765409074862744117176310, 7.984447783007730916841923059948, 8.627780332323383978289809631682, 9.375520392993560886578239447786

Graph of the $Z$-function along the critical line