L(s) = 1 | + (1 − i)2-s − i·4-s + (−1 + i)5-s + 2i·10-s + (1 + i)11-s + 16-s + (1 + i)20-s + 2·22-s − i·25-s + (1 − i)32-s + (−1 + i)41-s − 2i·43-s + (1 − i)44-s + (1 + i)47-s − i·49-s + (−1 − i)50-s + ⋯ |
L(s) = 1 | + (1 − i)2-s − i·4-s + (−1 + i)5-s + 2i·10-s + (1 + i)11-s + 16-s + (1 + i)20-s + 2·22-s − i·25-s + (1 − i)32-s + (−1 + i)41-s − 2i·43-s + (1 − i)44-s + (1 + i)47-s − i·49-s + (−1 − i)50-s + ⋯ |
Λ(s)=(=(1521s/2ΓC(s)L(s)(0.957+0.289i)Λ(1−s)
Λ(s)=(=(1521s/2ΓC(s)L(s)(0.957+0.289i)Λ(1−s)
Degree: |
2 |
Conductor: |
1521
= 32⋅132
|
Sign: |
0.957+0.289i
|
Analytic conductor: |
0.759077 |
Root analytic conductor: |
0.871250 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1521(577,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1521, ( :0), 0.957+0.289i)
|
Particular Values
L(21) |
≈ |
1.676054035 |
L(21) |
≈ |
1.676054035 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 13 | 1 |
good | 2 | 1+(−1+i)T−iT2 |
| 5 | 1+(1−i)T−iT2 |
| 7 | 1+iT2 |
| 11 | 1+(−1−i)T+iT2 |
| 17 | 1−T2 |
| 19 | 1−iT2 |
| 23 | 1−T2 |
| 29 | 1+T2 |
| 31 | 1−iT2 |
| 37 | 1+iT2 |
| 41 | 1+(1−i)T−iT2 |
| 43 | 1+2iT−T2 |
| 47 | 1+(−1−i)T+iT2 |
| 53 | 1+T2 |
| 59 | 1+(1+i)T+iT2 |
| 61 | 1+T2 |
| 67 | 1−iT2 |
| 71 | 1+(1−i)T−iT2 |
| 73 | 1+iT2 |
| 79 | 1+T2 |
| 83 | 1+(−1+i)T−iT2 |
| 89 | 1+(1+i)T+iT2 |
| 97 | 1−iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.02635070076401819652027012716, −8.949432082028980492138583646302, −7.84477301945013166274032704027, −7.14977543470036483781347895672, −6.37207147450831222010923368968, −5.14149409566546238989746991570, −4.21864583562343619871079672453, −3.68363712050568623108998423535, −2.81645471924645602486310125732, −1.72380868001794991272043699220,
1.14579219106845792076663418929, 3.27477425483719994674335466637, 4.06493804663884689961184578365, 4.66352069707040162174770065308, 5.59253313514255286898143936021, 6.31019007411589990166802500253, 7.19290765409074862744117176310, 7.984447783007730916841923059948, 8.627780332323383978289809631682, 9.375520392993560886578239447786