L(s) = 1 | + (−0.866 + 0.5i)4-s + (1.36 + 0.366i)7-s + (0.499 − 0.866i)16-s + (−0.366 + 1.36i)19-s − i·25-s + (−1.36 + 0.366i)28-s + (1 + i)31-s + (0.366 + 1.36i)37-s + (0.866 + 0.5i)49-s + 0.999i·64-s + (1.36 − 0.366i)67-s + (−1 + i)73-s + (−0.366 − 1.36i)76-s + (0.366 − 1.36i)97-s + (0.5 + 0.866i)100-s + ⋯ |
L(s) = 1 | + (−0.866 + 0.5i)4-s + (1.36 + 0.366i)7-s + (0.499 − 0.866i)16-s + (−0.366 + 1.36i)19-s − i·25-s + (−1.36 + 0.366i)28-s + (1 + i)31-s + (0.366 + 1.36i)37-s + (0.866 + 0.5i)49-s + 0.999i·64-s + (1.36 − 0.366i)67-s + (−1 + i)73-s + (−0.366 − 1.36i)76-s + (0.366 − 1.36i)97-s + (0.5 + 0.866i)100-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1521 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.674 - 0.738i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1521 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.674 - 0.738i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.034586889\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.034586889\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 5 | \( 1 + iT^{2} \) |
| 7 | \( 1 + (-1.36 - 0.366i)T + (0.866 + 0.5i)T^{2} \) |
| 11 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.366 - 1.36i)T + (-0.866 - 0.5i)T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (-1 - i)T + iT^{2} \) |
| 37 | \( 1 + (-0.366 - 1.36i)T + (-0.866 + 0.5i)T^{2} \) |
| 41 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 43 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 61 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-1.36 + 0.366i)T + (0.866 - 0.5i)T^{2} \) |
| 71 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 73 | \( 1 + (1 - i)T - iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 97 | \( 1 + (-0.366 + 1.36i)T + (-0.866 - 0.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.789983730860939749090604346396, −8.635401092113366327746898034725, −8.309615159805725908289861330521, −7.71047864039964680507588133831, −6.50127339193516017243931254201, −5.44727529413500105361017666323, −4.71105790625125623305125133738, −4.01381583352518620004423396348, −2.80054720559142132140513939114, −1.46383854567660906090243976228,
1.00590992146060072376580203962, 2.27257178374952788949614248738, 3.83953811371073736117525611212, 4.64762352851899894365460135792, 5.19795534094704571975896521050, 6.17477414005074460699207809921, 7.30603228816637395553731706194, 8.027026064507285190245537838033, 8.827211079583198201941644455174, 9.431850757414943487974547202953