L(s) = 1 | + (−0.866 + 0.5i)4-s + (1.36 + 0.366i)7-s + (0.499 − 0.866i)16-s + (−0.366 + 1.36i)19-s − i·25-s + (−1.36 + 0.366i)28-s + (1 + i)31-s + (0.366 + 1.36i)37-s + (0.866 + 0.5i)49-s + 0.999i·64-s + (1.36 − 0.366i)67-s + (−1 + i)73-s + (−0.366 − 1.36i)76-s + (0.366 − 1.36i)97-s + (0.5 + 0.866i)100-s + ⋯ |
L(s) = 1 | + (−0.866 + 0.5i)4-s + (1.36 + 0.366i)7-s + (0.499 − 0.866i)16-s + (−0.366 + 1.36i)19-s − i·25-s + (−1.36 + 0.366i)28-s + (1 + i)31-s + (0.366 + 1.36i)37-s + (0.866 + 0.5i)49-s + 0.999i·64-s + (1.36 − 0.366i)67-s + (−1 + i)73-s + (−0.366 − 1.36i)76-s + (0.366 − 1.36i)97-s + (0.5 + 0.866i)100-s + ⋯ |
Λ(s)=(=(1521s/2ΓC(s)L(s)(0.674−0.738i)Λ(1−s)
Λ(s)=(=(1521s/2ΓC(s)L(s)(0.674−0.738i)Λ(1−s)
Degree: |
2 |
Conductor: |
1521
= 32⋅132
|
Sign: |
0.674−0.738i
|
Analytic conductor: |
0.759077 |
Root analytic conductor: |
0.871250 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1521(1333,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1521, ( :0), 0.674−0.738i)
|
Particular Values
L(21) |
≈ |
1.034586889 |
L(21) |
≈ |
1.034586889 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 13 | 1 |
good | 2 | 1+(0.866−0.5i)T2 |
| 5 | 1+iT2 |
| 7 | 1+(−1.36−0.366i)T+(0.866+0.5i)T2 |
| 11 | 1+(−0.866+0.5i)T2 |
| 17 | 1+(0.5−0.866i)T2 |
| 19 | 1+(0.366−1.36i)T+(−0.866−0.5i)T2 |
| 23 | 1+(0.5+0.866i)T2 |
| 29 | 1+(−0.5−0.866i)T2 |
| 31 | 1+(−1−i)T+iT2 |
| 37 | 1+(−0.366−1.36i)T+(−0.866+0.5i)T2 |
| 41 | 1+(0.866−0.5i)T2 |
| 43 | 1+(0.5−0.866i)T2 |
| 47 | 1−iT2 |
| 53 | 1+T2 |
| 59 | 1+(0.866+0.5i)T2 |
| 61 | 1+(−0.5+0.866i)T2 |
| 67 | 1+(−1.36+0.366i)T+(0.866−0.5i)T2 |
| 71 | 1+(−0.866−0.5i)T2 |
| 73 | 1+(1−i)T−iT2 |
| 79 | 1+T2 |
| 83 | 1+iT2 |
| 89 | 1+(−0.866+0.5i)T2 |
| 97 | 1+(−0.366+1.36i)T+(−0.866−0.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.789983730860939749090604346396, −8.635401092113366327746898034725, −8.309615159805725908289861330521, −7.71047864039964680507588133831, −6.50127339193516017243931254201, −5.44727529413500105361017666323, −4.71105790625125623305125133738, −4.01381583352518620004423396348, −2.80054720559142132140513939114, −1.46383854567660906090243976228,
1.00590992146060072376580203962, 2.27257178374952788949614248738, 3.83953811371073736117525611212, 4.64762352851899894365460135792, 5.19795534094704571975896521050, 6.17477414005074460699207809921, 7.30603228816637395553731706194, 8.027026064507285190245537838033, 8.827211079583198201941644455174, 9.431850757414943487974547202953