L(s) = 1 | + (−4.74 + 5.66i)2-s + (34.9 + 198. i)4-s + (−15.1 + 41.5i)5-s + (243. − 1.38e3i)7-s + (−2.92e3 − 1.68e3i)8-s + (−163. − 283. i)10-s + (4.42e3 + 1.21e4i)11-s + (4.32e4 − 3.62e4i)13-s + (6.66e3 + 7.94e3i)14-s + (−2.49e4 + 9.09e3i)16-s + (2.65e4 − 1.53e4i)17-s + (6.82e4 − 1.18e5i)19-s + (−8.77e3 − 1.54e3i)20-s + (−8.97e4 − 3.26e4i)22-s + (−4.12e5 + 7.27e4i)23-s + ⋯ |
L(s) = 1 | + (−0.296 + 0.353i)2-s + (0.136 + 0.774i)4-s + (−0.0242 + 0.0664i)5-s + (0.101 − 0.575i)7-s + (−0.714 − 0.412i)8-s + (−0.0163 − 0.0283i)10-s + (0.302 + 0.829i)11-s + (1.51 − 1.26i)13-s + (0.173 + 0.206i)14-s + (−0.381 + 0.138i)16-s + (0.317 − 0.183i)17-s + (0.523 − 0.906i)19-s + (−0.0548 − 0.00966i)20-s + (−0.383 − 0.139i)22-s + (−1.47 + 0.260i)23-s + ⋯ |
Λ(s)=(=(81s/2ΓC(s)L(s)(0.654−0.756i)Λ(9−s)
Λ(s)=(=(81s/2ΓC(s+4)L(s)(0.654−0.756i)Λ(1−s)
Degree: |
2 |
Conductor: |
81
= 34
|
Sign: |
0.654−0.756i
|
Analytic conductor: |
32.9976 |
Root analytic conductor: |
5.74435 |
Motivic weight: |
8 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ81(35,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 81, ( :4), 0.654−0.756i)
|
Particular Values
L(29) |
≈ |
1.68191+0.768992i |
L(21) |
≈ |
1.68191+0.768992i |
L(5) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
good | 2 | 1+(4.74−5.66i)T+(−44.4−252.i)T2 |
| 5 | 1+(15.1−41.5i)T+(−2.99e5−2.51e5i)T2 |
| 7 | 1+(−243.+1.38e3i)T+(−5.41e6−1.97e6i)T2 |
| 11 | 1+(−4.42e3−1.21e4i)T+(−1.64e8+1.37e8i)T2 |
| 13 | 1+(−4.32e4+3.62e4i)T+(1.41e8−8.03e8i)T2 |
| 17 | 1+(−2.65e4+1.53e4i)T+(3.48e9−6.04e9i)T2 |
| 19 | 1+(−6.82e4+1.18e5i)T+(−8.49e9−1.47e10i)T2 |
| 23 | 1+(4.12e5−7.27e4i)T+(7.35e10−2.67e10i)T2 |
| 29 | 1+(−2.50e5+2.98e5i)T+(−8.68e10−4.92e11i)T2 |
| 31 | 1+(2.55e4+1.44e5i)T+(−8.01e11+2.91e11i)T2 |
| 37 | 1+(−8.98e5−1.55e6i)T+(−1.75e12+3.04e12i)T2 |
| 41 | 1+(−2.27e6−2.70e6i)T+(−1.38e12+7.86e12i)T2 |
| 43 | 1+(−3.81e5+1.38e5i)T+(8.95e12−7.51e12i)T2 |
| 47 | 1+(−4.80e6−8.47e5i)T+(2.23e13+8.14e12i)T2 |
| 53 | 1−1.24e7iT−6.22e13T2 |
| 59 | 1+(3.55e6−9.77e6i)T+(−1.12e14−9.43e13i)T2 |
| 61 | 1+(−4.66e5+2.64e6i)T+(−1.80e14−6.55e13i)T2 |
| 67 | 1+(−1.30e7+1.09e7i)T+(7.05e13−3.99e14i)T2 |
| 71 | 1+(−6.93e6+4.00e6i)T+(3.22e14−5.59e14i)T2 |
| 73 | 1+(1.28e7−2.22e7i)T+(−4.03e14−6.98e14i)T2 |
| 79 | 1+(−1.24e6−1.04e6i)T+(2.63e14+1.49e15i)T2 |
| 83 | 1+(−4.09e7+4.87e7i)T+(−3.91e14−2.21e15i)T2 |
| 89 | 1+(2.75e7+1.59e7i)T+(1.96e15+3.40e15i)T2 |
| 97 | 1+(−4.45e7+1.62e7i)T+(6.00e15−5.03e15i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.90035096427852567829877992594, −11.79892678661785927089600415677, −10.65797080613425815959551271174, −9.358786640017528761882979422732, −8.118225264542351991329123160967, −7.30945099294214053784072573353, −6.03141267231588112186236877236, −4.19859669245610767229059253953, −2.97372675544593347402572166383, −0.936187772644156042239889112384,
0.886435572747332940998375591979, 2.06346282816438901950196105105, 3.82851151509504262638102106832, 5.64869842785008657957317134007, 6.42126710199653072623658982535, 8.398801339854974229299883685554, 9.177052624571255574103790397000, 10.44256757204319236397475897134, 11.38370800435565837793690010663, 12.23535044362979697893747994914