L(s) = 1 | + (19.4 − 23.2i)2-s + (−115. − 652. i)4-s + (197. − 542. i)5-s + (379. − 2.15e3i)7-s + (−1.06e4 − 6.15e3i)8-s + (−8.74e3 − 1.51e4i)10-s + (3.14e3 + 8.63e3i)11-s + (−2.15e4 + 1.80e4i)13-s + (−4.25e4 − 5.07e4i)14-s + (−1.91e5 + 6.96e4i)16-s + (1.18e5 − 6.86e4i)17-s + (9.47e4 − 1.64e5i)19-s + (−3.76e5 − 6.63e4i)20-s + (2.61e5 + 9.52e4i)22-s + (−2.06e5 + 3.64e4i)23-s + ⋯ |
L(s) = 1 | + (1.21 − 1.45i)2-s + (−0.449 − 2.54i)4-s + (0.315 − 0.867i)5-s + (0.158 − 0.896i)7-s + (−2.60 − 1.50i)8-s + (−0.874 − 1.51i)10-s + (0.214 + 0.589i)11-s + (−0.754 + 0.633i)13-s + (−1.10 − 1.32i)14-s + (−2.91 + 1.06i)16-s + (1.42 − 0.822i)17-s + (0.727 − 1.25i)19-s + (−2.35 − 0.414i)20-s + (1.11 + 0.406i)22-s + (−0.739 + 0.130i)23-s + ⋯ |
Λ(s)=(=(81s/2ΓC(s)L(s)(−0.707−0.706i)Λ(9−s)
Λ(s)=(=(81s/2ΓC(s+4)L(s)(−0.707−0.706i)Λ(1−s)
Degree: |
2 |
Conductor: |
81
= 34
|
Sign: |
−0.707−0.706i
|
Analytic conductor: |
32.9976 |
Root analytic conductor: |
5.74435 |
Motivic weight: |
8 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ81(35,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 81, ( :4), −0.707−0.706i)
|
Particular Values
L(29) |
≈ |
1.36867+3.30985i |
L(21) |
≈ |
1.36867+3.30985i |
L(5) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
good | 2 | 1+(−19.4+23.2i)T+(−44.4−252.i)T2 |
| 5 | 1+(−197.+542.i)T+(−2.99e5−2.51e5i)T2 |
| 7 | 1+(−379.+2.15e3i)T+(−5.41e6−1.97e6i)T2 |
| 11 | 1+(−3.14e3−8.63e3i)T+(−1.64e8+1.37e8i)T2 |
| 13 | 1+(2.15e4−1.80e4i)T+(1.41e8−8.03e8i)T2 |
| 17 | 1+(−1.18e5+6.86e4i)T+(3.48e9−6.04e9i)T2 |
| 19 | 1+(−9.47e4+1.64e5i)T+(−8.49e9−1.47e10i)T2 |
| 23 | 1+(2.06e5−3.64e4i)T+(7.35e10−2.67e10i)T2 |
| 29 | 1+(5.59e5−6.66e5i)T+(−8.68e10−4.92e11i)T2 |
| 31 | 1+(−2.01e5−1.14e6i)T+(−8.01e11+2.91e11i)T2 |
| 37 | 1+(1.07e5+1.86e5i)T+(−1.75e12+3.04e12i)T2 |
| 41 | 1+(−8.39e5−1.00e6i)T+(−1.38e12+7.86e12i)T2 |
| 43 | 1+(−1.24e6+4.52e5i)T+(8.95e12−7.51e12i)T2 |
| 47 | 1+(3.65e6+6.45e5i)T+(2.23e13+8.14e12i)T2 |
| 53 | 1+2.09e6iT−6.22e13T2 |
| 59 | 1+(−4.17e6+1.14e7i)T+(−1.12e14−9.43e13i)T2 |
| 61 | 1+(−4.25e6+2.41e7i)T+(−1.80e14−6.55e13i)T2 |
| 67 | 1+(−8.20e6+6.88e6i)T+(7.05e13−3.99e14i)T2 |
| 71 | 1+(8.38e6−4.84e6i)T+(3.22e14−5.59e14i)T2 |
| 73 | 1+(−9.79e5+1.69e6i)T+(−4.03e14−6.98e14i)T2 |
| 79 | 1+(1.87e7+1.56e7i)T+(2.63e14+1.49e15i)T2 |
| 83 | 1+(−6.79e5+8.09e5i)T+(−3.91e14−2.21e15i)T2 |
| 89 | 1+(1.03e8+5.96e7i)T+(1.96e15+3.40e15i)T2 |
| 97 | 1+(−1.40e8+5.11e7i)T+(6.00e15−5.03e15i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.17275821965303080735306955076, −11.25388958630255604249312156407, −9.983017231520414986559904167166, −9.329073502385749063674351347500, −7.10526077470444585739525404674, −5.25164798947972003864593813825, −4.64433563853971428724015947957, −3.28008913234175000672333321688, −1.72310837247735969649791846583, −0.73169136046461978916422434556,
2.68865539220535841456527731113, 3.85165423392964409389328780960, 5.68749804004074500174626863805, 5.91816555274751111580991976571, 7.48307641823128658272357930944, 8.266098779992328556506266818508, 9.954124651686346393827845320288, 11.78001515880860787772136655590, 12.53710749084476885565882039562, 13.77525107481611601632030765714