L(s) = 1 | + (−14.0 + 16.7i)2-s + (−38.4 − 217. i)4-s + (−373. + 1.02e3i)5-s + (−91.6 + 519. i)7-s + (−659. − 380. i)8-s + (−1.19e4 − 2.06e4i)10-s + (2.92e3 + 8.03e3i)11-s + (−2.76e4 + 2.31e4i)13-s + (−7.40e3 − 8.83e3i)14-s + (6.88e4 − 2.50e4i)16-s + (−9.04e4 + 5.22e4i)17-s + (−5.02e4 + 8.71e4i)19-s + (2.37e5 + 4.18e4i)20-s + (−1.75e5 − 6.38e4i)22-s + (−3.58e4 + 6.32e3i)23-s + ⋯ |
L(s) = 1 | + (−0.877 + 1.04i)2-s + (−0.150 − 0.850i)4-s + (−0.596 + 1.64i)5-s + (−0.0381 + 0.216i)7-s + (−0.160 − 0.0929i)8-s + (−1.19 − 2.06i)10-s + (0.199 + 0.548i)11-s + (−0.966 + 0.811i)13-s + (−0.192 − 0.229i)14-s + (1.05 − 0.382i)16-s + (−1.08 + 0.625i)17-s + (−0.385 + 0.668i)19-s + (1.48 + 0.261i)20-s + (−0.748 − 0.272i)22-s + (−0.128 + 0.0226i)23-s + ⋯ |
Λ(s)=(=(81s/2ΓC(s)L(s)(0.784+0.620i)Λ(9−s)
Λ(s)=(=(81s/2ΓC(s+4)L(s)(0.784+0.620i)Λ(1−s)
Degree: |
2 |
Conductor: |
81
= 34
|
Sign: |
0.784+0.620i
|
Analytic conductor: |
32.9976 |
Root analytic conductor: |
5.74435 |
Motivic weight: |
8 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ81(35,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 81, ( :4), 0.784+0.620i)
|
Particular Values
L(29) |
≈ |
0.337759−0.117378i |
L(21) |
≈ |
0.337759−0.117378i |
L(5) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
good | 2 | 1+(14.0−16.7i)T+(−44.4−252.i)T2 |
| 5 | 1+(373.−1.02e3i)T+(−2.99e5−2.51e5i)T2 |
| 7 | 1+(91.6−519.i)T+(−5.41e6−1.97e6i)T2 |
| 11 | 1+(−2.92e3−8.03e3i)T+(−1.64e8+1.37e8i)T2 |
| 13 | 1+(2.76e4−2.31e4i)T+(1.41e8−8.03e8i)T2 |
| 17 | 1+(9.04e4−5.22e4i)T+(3.48e9−6.04e9i)T2 |
| 19 | 1+(5.02e4−8.71e4i)T+(−8.49e9−1.47e10i)T2 |
| 23 | 1+(3.58e4−6.32e3i)T+(7.35e10−2.67e10i)T2 |
| 29 | 1+(6.37e5−7.60e5i)T+(−8.68e10−4.92e11i)T2 |
| 31 | 1+(1.81e5+1.03e6i)T+(−8.01e11+2.91e11i)T2 |
| 37 | 1+(−1.04e6−1.80e6i)T+(−1.75e12+3.04e12i)T2 |
| 41 | 1+(−5.27e5−6.28e5i)T+(−1.38e12+7.86e12i)T2 |
| 43 | 1+(−2.50e6+9.12e5i)T+(8.95e12−7.51e12i)T2 |
| 47 | 1+(−8.34e6−1.47e6i)T+(2.23e13+8.14e12i)T2 |
| 53 | 1−5.29e6iT−6.22e13T2 |
| 59 | 1+(−5.70e6+1.56e7i)T+(−1.12e14−9.43e13i)T2 |
| 61 | 1+(1.10e5−6.24e5i)T+(−1.80e14−6.55e13i)T2 |
| 67 | 1+(−1.39e7+1.17e7i)T+(7.05e13−3.99e14i)T2 |
| 71 | 1+(1.69e7−9.76e6i)T+(3.22e14−5.59e14i)T2 |
| 73 | 1+(1.76e7−3.06e7i)T+(−4.03e14−6.98e14i)T2 |
| 79 | 1+(−2.71e7−2.28e7i)T+(2.63e14+1.49e15i)T2 |
| 83 | 1+(−3.47e7+4.14e7i)T+(−3.91e14−2.21e15i)T2 |
| 89 | 1+(2.57e7+1.48e7i)T+(1.96e15+3.40e15i)T2 |
| 97 | 1+(−8.11e7+2.95e7i)T+(6.00e15−5.03e15i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.29651939360316398652390849140, −12.45043032521661001801405819008, −11.27874179408633172256377167115, −10.16391487307941816679624103374, −9.079421866196514128519270203668, −7.69774968055476450420074654349, −7.01586138692293955301541779012, −6.14261760170720886346441721552, −3.98791408827109681143831048686, −2.35239820711185662681905684326,
0.21007953167463042306836693702, 0.78311627405923296134633952433, 2.38000659553628796132504774013, 4.11149127065707569653667485349, 5.44140886049615132797335258069, 7.60533359107765838591026328623, 8.762873068577680250021165417937, 9.305534271879264782407175251619, 10.66291027753676219009780741043, 11.69129003811342745096947716693