L(s) = 1 | + (1.18 + 1.26i)2-s + (−1.21 + 1.23i)3-s + (−0.0583 + 1.00i)4-s + (−1.90 + 0.222i)5-s + (−3.00 − 0.0611i)6-s + (4.00 + 2.00i)7-s + (1.32 − 1.10i)8-s + (−0.0522 − 2.99i)9-s + (−2.54 − 2.13i)10-s + (−2.00 − 4.65i)11-s + (−1.16 − 1.28i)12-s + (−1.48 − 0.352i)13-s + (2.22 + 7.43i)14-s + (2.03 − 2.61i)15-s + (4.96 + 0.580i)16-s + (−0.703 + 3.99i)17-s + ⋯ |
L(s) = 1 | + (0.841 + 0.891i)2-s + (−0.700 + 0.713i)3-s + (−0.0291 + 0.501i)4-s + (−0.850 + 0.0994i)5-s + (−1.22 − 0.0249i)6-s + (1.51 + 0.759i)7-s + (0.467 − 0.392i)8-s + (−0.0174 − 0.999i)9-s + (−0.804 − 0.674i)10-s + (−0.605 − 1.40i)11-s + (−0.337 − 0.372i)12-s + (−0.412 − 0.0978i)13-s + (0.594 + 1.98i)14-s + (0.525 − 0.676i)15-s + (1.24 + 0.145i)16-s + (−0.170 + 0.967i)17-s + ⋯ |
Λ(s)=(=(81s/2ΓC(s)L(s)(0.0621−0.998i)Λ(2−s)
Λ(s)=(=(81s/2ΓC(s+1/2)L(s)(0.0621−0.998i)Λ(1−s)
Degree: |
2 |
Conductor: |
81
= 34
|
Sign: |
0.0621−0.998i
|
Analytic conductor: |
0.646788 |
Root analytic conductor: |
0.804231 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ81(22,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 81, ( :1/2), 0.0621−0.998i)
|
Particular Values
L(1) |
≈ |
0.838874+0.788290i |
L(21) |
≈ |
0.838874+0.788290i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.21−1.23i)T |
good | 2 | 1+(−1.18−1.26i)T+(−0.116+1.99i)T2 |
| 5 | 1+(1.90−0.222i)T+(4.86−1.15i)T2 |
| 7 | 1+(−4.00−2.00i)T+(4.18+5.61i)T2 |
| 11 | 1+(2.00+4.65i)T+(−7.54+8.00i)T2 |
| 13 | 1+(1.48+0.352i)T+(11.6+5.83i)T2 |
| 17 | 1+(0.703−3.99i)T+(−15.9−5.81i)T2 |
| 19 | 1+(0.430+2.44i)T+(−17.8+6.49i)T2 |
| 23 | 1+(1.51−0.761i)T+(13.7−18.4i)T2 |
| 29 | 1+(0.835−2.79i)T+(−24.2−15.9i)T2 |
| 31 | 1+(4.90+3.22i)T+(12.2+28.4i)T2 |
| 37 | 1+(3.32−1.20i)T+(28.3−23.7i)T2 |
| 41 | 1+(−3.07+3.25i)T+(−2.38−40.9i)T2 |
| 43 | 1+(−2.67+3.58i)T+(−12.3−41.1i)T2 |
| 47 | 1+(−2.58+1.69i)T+(18.6−43.1i)T2 |
| 53 | 1+(1.49−2.59i)T+(−26.5−45.8i)T2 |
| 59 | 1+(0.820−1.90i)T+(−40.4−42.9i)T2 |
| 61 | 1+(−0.490−8.41i)T+(−60.5+7.08i)T2 |
| 67 | 1+(3.13+10.4i)T+(−55.9+36.8i)T2 |
| 71 | 1+(0.318+0.267i)T+(12.3+69.9i)T2 |
| 73 | 1+(6.86−5.76i)T+(12.6−71.8i)T2 |
| 79 | 1+(−10.7−11.4i)T+(−4.59+78.8i)T2 |
| 83 | 1+(−5.35−5.68i)T+(−4.82+82.8i)T2 |
| 89 | 1+(−2.88+2.42i)T+(15.4−87.6i)T2 |
| 97 | 1+(9.96+1.16i)T+(94.3+22.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.02028596861524577892615535035, −13.93130082997937089536379870021, −12.44529086975534872580373083373, −11.33873834974220217039139551898, −10.66868056506696101362494031101, −8.689657716205243292177990241729, −7.59186950639378333594761214665, −5.89283430320555612784352660314, −5.14578873505365701768439845558, −3.93079967434527822511745579353,
1.96312216619758705253530953510, 4.35696923393780539344019526561, 5.05040201720230738475175052119, 7.44174033130949592679796161174, 7.83299847141214451885489072234, 10.36381177766010410990416254433, 11.28903227997110831452976369759, 11.95358577183355471436931988310, 12.72562138713614816764132224673, 13.86676805152873698119437523414