L(s) = 1 | + (0.259 + 0.275i)2-s + (−0.322 − 1.70i)3-s + (0.107 − 1.85i)4-s + (−1.27 + 0.148i)5-s + (0.384 − 0.530i)6-s + (1.70 + 0.857i)7-s + (1.11 − 0.938i)8-s + (−2.79 + 1.09i)9-s + (−0.371 − 0.312i)10-s + (1.93 + 4.48i)11-s + (−3.18 + 0.413i)12-s + (3.34 + 0.793i)13-s + (0.207 + 0.692i)14-s + (0.663 + 2.11i)15-s + (−3.13 − 0.366i)16-s + (0.0728 − 0.412i)17-s + ⋯ |
L(s) = 1 | + (0.183 + 0.194i)2-s + (−0.185 − 0.982i)3-s + (0.0539 − 0.926i)4-s + (−0.569 + 0.0665i)5-s + (0.157 − 0.216i)6-s + (0.645 + 0.324i)7-s + (0.395 − 0.331i)8-s + (−0.930 + 0.365i)9-s + (−0.117 − 0.0986i)10-s + (0.582 + 1.35i)11-s + (−0.920 + 0.119i)12-s + (0.928 + 0.220i)13-s + (0.0554 + 0.185i)14-s + (0.171 + 0.547i)15-s + (−0.784 − 0.0917i)16-s + (0.0176 − 0.100i)17-s + ⋯ |
Λ(s)=(=(81s/2ΓC(s)L(s)(0.606+0.795i)Λ(2−s)
Λ(s)=(=(81s/2ΓC(s+1/2)L(s)(0.606+0.795i)Λ(1−s)
Degree: |
2 |
Conductor: |
81
= 34
|
Sign: |
0.606+0.795i
|
Analytic conductor: |
0.646788 |
Root analytic conductor: |
0.804231 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ81(22,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 81, ( :1/2), 0.606+0.795i)
|
Particular Values
L(1) |
≈ |
0.874812−0.433171i |
L(21) |
≈ |
0.874812−0.433171i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.322+1.70i)T |
good | 2 | 1+(−0.259−0.275i)T+(−0.116+1.99i)T2 |
| 5 | 1+(1.27−0.148i)T+(4.86−1.15i)T2 |
| 7 | 1+(−1.70−0.857i)T+(4.18+5.61i)T2 |
| 11 | 1+(−1.93−4.48i)T+(−7.54+8.00i)T2 |
| 13 | 1+(−3.34−0.793i)T+(11.6+5.83i)T2 |
| 17 | 1+(−0.0728+0.412i)T+(−15.9−5.81i)T2 |
| 19 | 1+(0.626+3.55i)T+(−17.8+6.49i)T2 |
| 23 | 1+(5.99−3.01i)T+(13.7−18.4i)T2 |
| 29 | 1+(−1.44+4.81i)T+(−24.2−15.9i)T2 |
| 31 | 1+(−5.54−3.64i)T+(12.2+28.4i)T2 |
| 37 | 1+(−0.465+0.169i)T+(28.3−23.7i)T2 |
| 41 | 1+(−4.16+4.41i)T+(−2.38−40.9i)T2 |
| 43 | 1+(6.92−9.30i)T+(−12.3−41.1i)T2 |
| 47 | 1+(5.06−3.33i)T+(18.6−43.1i)T2 |
| 53 | 1+(−2.95+5.10i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−2.23+5.17i)T+(−40.4−42.9i)T2 |
| 61 | 1+(−0.161−2.77i)T+(−60.5+7.08i)T2 |
| 67 | 1+(−2.07−6.93i)T+(−55.9+36.8i)T2 |
| 71 | 1+(11.9+10.0i)T+(12.3+69.9i)T2 |
| 73 | 1+(5.04−4.23i)T+(12.6−71.8i)T2 |
| 79 | 1+(2.62+2.78i)T+(−4.59+78.8i)T2 |
| 83 | 1+(−3.32−3.52i)T+(−4.82+82.8i)T2 |
| 89 | 1+(7.97−6.69i)T+(15.4−87.6i)T2 |
| 97 | 1+(−2.14−0.251i)T+(94.3+22.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.22215875135161313944160586624, −13.28006667059237293768355894649, −11.87835531060008224664027907127, −11.32074564646154471386920530588, −9.790742593875732048047470426518, −8.294546716258683424721739727282, −7.08168920326359930500471613984, −6.03512718996633684943517999056, −4.56187894543284082678708233688, −1.76092800498733008326588397997,
3.47355894831640250403254915817, 4.29511485383354791600224903577, 6.07136904630790737898561641989, 8.083861829413223929873640103018, 8.624975573484237862577835163050, 10.41559780063554598574297468133, 11.40001664117603995699720999852, 11.98250274988202838958745375086, 13.58267305045831086682175528865, 14.44229368476028323732606301151