L(s) = 1 | + (−1.83 − 0.509i)2-s + (1.22 + 1.22i)3-s + (1.37 + 0.832i)4-s + (3.83 − 0.148i)5-s + (−1.61 − 2.87i)6-s + (0.365 + 0.0571i)7-s + (0.508 + 0.538i)8-s + (−0.0160 + 2.99i)9-s + (−7.09 − 1.68i)10-s + (−0.814 − 5.96i)11-s + (0.662 + 2.70i)12-s + (−3.43 + 5.00i)13-s + (−0.639 − 0.290i)14-s + (4.86 + 4.52i)15-s + (−2.15 − 4.09i)16-s + (3.18 − 1.60i)17-s + ⋯ |
L(s) = 1 | + (−1.29 − 0.360i)2-s + (0.705 + 0.708i)3-s + (0.689 + 0.416i)4-s + (1.71 − 0.0665i)5-s + (−0.657 − 1.17i)6-s + (0.138 + 0.0215i)7-s + (0.179 + 0.190i)8-s + (−0.00535 + 0.999i)9-s + (−2.24 − 0.531i)10-s + (−0.245 − 1.79i)11-s + (0.191 + 0.782i)12-s + (−0.951 + 1.38i)13-s + (−0.170 − 0.0776i)14-s + (1.25 + 1.16i)15-s + (−0.539 − 1.02i)16-s + (0.772 − 0.388i)17-s + ⋯ |
Λ(s)=(=(243s/2ΓC(s)L(s)(0.976−0.214i)Λ(2−s)
Λ(s)=(=(243s/2ΓC(s+1/2)L(s)(0.976−0.214i)Λ(1−s)
Degree: |
2 |
Conductor: |
243
= 35
|
Sign: |
0.976−0.214i
|
Analytic conductor: |
1.94036 |
Root analytic conductor: |
1.39296 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ243(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 243, ( :1/2), 0.976−0.214i)
|
Particular Values
L(1) |
≈ |
1.02997+0.111722i |
L(21) |
≈ |
1.02997+0.111722i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.22−1.22i)T |
good | 2 | 1+(1.83+0.509i)T+(1.71+1.03i)T2 |
| 5 | 1+(−3.83+0.148i)T+(4.98−0.387i)T2 |
| 7 | 1+(−0.365−0.0571i)T+(6.66+2.13i)T2 |
| 11 | 1+(0.814+5.96i)T+(−10.5+2.94i)T2 |
| 13 | 1+(3.43−5.00i)T+(−4.68−12.1i)T2 |
| 17 | 1+(−3.18+1.60i)T+(10.1−13.6i)T2 |
| 19 | 1+(−0.159−2.73i)T+(−18.8+2.20i)T2 |
| 23 | 1+(0.230−0.597i)T+(−17.0−15.4i)T2 |
| 29 | 1+(−0.792−0.566i)T+(9.38+27.4i)T2 |
| 31 | 1+(−3.51+4.03i)T+(−4.19−30.7i)T2 |
| 37 | 1+(3.14+4.22i)T+(−10.6+35.4i)T2 |
| 41 | 1+(0.857−3.32i)T+(−35.8−19.8i)T2 |
| 43 | 1+(−3.41−3.09i)T+(4.16+42.7i)T2 |
| 47 | 1+(2.84+3.25i)T+(−6.36+46.5i)T2 |
| 53 | 1+(0.566−3.21i)T+(−49.8−18.1i)T2 |
| 59 | 1+(1.88−0.768i)T+(42.1−41.3i)T2 |
| 61 | 1+(12.5−7.55i)T+(28.4−53.9i)T2 |
| 67 | 1+(−6.29+4.49i)T+(21.6−63.3i)T2 |
| 71 | 1+(2.46+8.24i)T+(−59.3+39.0i)T2 |
| 73 | 1+(6.59−1.56i)T+(65.2−32.7i)T2 |
| 79 | 1+(−2.56+2.51i)T+(1.53−78.9i)T2 |
| 83 | 1+(3.79+14.7i)T+(−72.6+40.0i)T2 |
| 89 | 1+(−1.54+5.15i)T+(−74.3−48.9i)T2 |
| 97 | 1+(−12.6−0.491i)T+(96.7+7.51i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.70125728845483094432942226737, −10.67988914453321110546972918961, −9.960623033504755833355071575333, −9.331087809088576834545953659302, −8.723960214643556489890935593606, −7.66032838832732826768172577374, −6.01757938571794255780161478084, −4.90362268289885828360075691966, −2.89214731814709362922088217142, −1.74348449633146173793495728005,
1.50431494722307919795784407147, 2.61136326754719227979749585475, 5.06520099139419757479017123994, 6.48232464858554348247261287121, 7.32163504698286396040014925662, 8.136131331279243302595917577193, 9.278532967928895857893155769636, 9.933867138241574732684099312726, 10.35692356368972010541491823263, 12.46272208292836898737940331811