Properties

Label 2-3e5-243.103-c1-0-9
Degree $2$
Conductor $243$
Sign $-0.318 + 0.947i$
Analytic cond. $1.94036$
Root an. cond. $1.39296$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.60 − 0.724i)2-s + (0.610 + 1.62i)3-s + (4.53 + 2.73i)4-s + (−1.88 + 0.0730i)5-s + (−0.415 − 4.65i)6-s + (−3.79 − 0.594i)7-s + (−6.10 − 6.46i)8-s + (−2.25 + 1.98i)9-s + (4.94 + 1.17i)10-s + (−0.256 − 1.87i)11-s + (−1.66 + 9.01i)12-s + (3.67 − 5.35i)13-s + (9.45 + 4.29i)14-s + (−1.26 − 3.00i)15-s + (6.25 + 11.8i)16-s + (3.18 − 1.59i)17-s + ⋯
L(s)  = 1  + (−1.83 − 0.512i)2-s + (0.352 + 0.935i)3-s + (2.26 + 1.36i)4-s + (−0.841 + 0.0326i)5-s + (−0.169 − 1.90i)6-s + (−1.43 − 0.224i)7-s + (−2.15 − 2.28i)8-s + (−0.751 + 0.660i)9-s + (1.56 + 0.370i)10-s + (−0.0774 − 0.566i)11-s + (−0.480 + 2.60i)12-s + (1.01 − 1.48i)13-s + (2.52 + 1.14i)14-s + (−0.327 − 0.775i)15-s + (1.56 + 2.96i)16-s + (0.771 − 0.387i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 243 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.318 + 0.947i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 243 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.318 + 0.947i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(243\)    =    \(3^{5}\)
Sign: $-0.318 + 0.947i$
Analytic conductor: \(1.94036\)
Root analytic conductor: \(1.39296\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{243} (103, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 243,\ (\ :1/2),\ -0.318 + 0.947i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.137142 - 0.190817i\)
\(L(\frac12)\) \(\approx\) \(0.137142 - 0.190817i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.610 - 1.62i)T \)
good2 \( 1 + (2.60 + 0.724i)T + (1.71 + 1.03i)T^{2} \)
5 \( 1 + (1.88 - 0.0730i)T + (4.98 - 0.387i)T^{2} \)
7 \( 1 + (3.79 + 0.594i)T + (6.66 + 2.13i)T^{2} \)
11 \( 1 + (0.256 + 1.87i)T + (-10.5 + 2.94i)T^{2} \)
13 \( 1 + (-3.67 + 5.35i)T + (-4.68 - 12.1i)T^{2} \)
17 \( 1 + (-3.18 + 1.59i)T + (10.1 - 13.6i)T^{2} \)
19 \( 1 + (0.0127 + 0.219i)T + (-18.8 + 2.20i)T^{2} \)
23 \( 1 + (-1.10 + 2.85i)T + (-17.0 - 15.4i)T^{2} \)
29 \( 1 + (-0.913 - 0.653i)T + (9.38 + 27.4i)T^{2} \)
31 \( 1 + (-0.433 + 0.496i)T + (-4.19 - 30.7i)T^{2} \)
37 \( 1 + (3.46 + 4.65i)T + (-10.6 + 35.4i)T^{2} \)
41 \( 1 + (0.698 - 2.71i)T + (-35.8 - 19.8i)T^{2} \)
43 \( 1 + (8.61 + 7.81i)T + (4.16 + 42.7i)T^{2} \)
47 \( 1 + (3.40 + 3.90i)T + (-6.36 + 46.5i)T^{2} \)
53 \( 1 + (1.02 - 5.78i)T + (-49.8 - 18.1i)T^{2} \)
59 \( 1 + (6.66 - 2.72i)T + (42.1 - 41.3i)T^{2} \)
61 \( 1 + (-3.41 + 2.06i)T + (28.4 - 53.9i)T^{2} \)
67 \( 1 + (6.03 - 4.31i)T + (21.6 - 63.3i)T^{2} \)
71 \( 1 + (3.34 + 11.1i)T + (-59.3 + 39.0i)T^{2} \)
73 \( 1 + (11.2 - 2.66i)T + (65.2 - 32.7i)T^{2} \)
79 \( 1 + (0.372 - 0.365i)T + (1.53 - 78.9i)T^{2} \)
83 \( 1 + (-0.659 - 2.55i)T + (-72.6 + 40.0i)T^{2} \)
89 \( 1 + (0.664 - 2.21i)T + (-74.3 - 48.9i)T^{2} \)
97 \( 1 + (-17.6 - 0.686i)T + (96.7 + 7.51i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.33164354670492938667472889756, −10.44827331546384547070624654907, −10.04085785609870887212798848707, −8.937653077015617205653421855886, −8.285020265518967843708520402791, −7.36921801831389914826709349684, −5.98674154152495445395400267493, −3.48774101047068864139207620643, −3.10210692828041069478943617180, −0.32221983559311624037935492951, 1.59254559808787157173114408178, 3.29599366873943123928264400251, 6.13821745160568320622517278165, 6.72006962938510144768769019424, 7.58556064813340134431054813517, 8.477729039052764424583035789922, 9.262114951200628914694003028870, 10.05089169310510116685926319506, 11.45930879613384763667006499787, 11.99391193355370979821016736658

Graph of the $Z$-function along the critical line