L(s) = 1 | + (−2.60 − 0.724i)2-s + (0.610 + 1.62i)3-s + (4.53 + 2.73i)4-s + (−1.88 + 0.0730i)5-s + (−0.415 − 4.65i)6-s + (−3.79 − 0.594i)7-s + (−6.10 − 6.46i)8-s + (−2.25 + 1.98i)9-s + (4.94 + 1.17i)10-s + (−0.256 − 1.87i)11-s + (−1.66 + 9.01i)12-s + (3.67 − 5.35i)13-s + (9.45 + 4.29i)14-s + (−1.26 − 3.00i)15-s + (6.25 + 11.8i)16-s + (3.18 − 1.59i)17-s + ⋯ |
L(s) = 1 | + (−1.83 − 0.512i)2-s + (0.352 + 0.935i)3-s + (2.26 + 1.36i)4-s + (−0.841 + 0.0326i)5-s + (−0.169 − 1.90i)6-s + (−1.43 − 0.224i)7-s + (−2.15 − 2.28i)8-s + (−0.751 + 0.660i)9-s + (1.56 + 0.370i)10-s + (−0.0774 − 0.566i)11-s + (−0.480 + 2.60i)12-s + (1.01 − 1.48i)13-s + (2.52 + 1.14i)14-s + (−0.327 − 0.775i)15-s + (1.56 + 2.96i)16-s + (0.771 − 0.387i)17-s + ⋯ |
Λ(s)=(=(243s/2ΓC(s)L(s)(−0.318+0.947i)Λ(2−s)
Λ(s)=(=(243s/2ΓC(s+1/2)L(s)(−0.318+0.947i)Λ(1−s)
Degree: |
2 |
Conductor: |
243
= 35
|
Sign: |
−0.318+0.947i
|
Analytic conductor: |
1.94036 |
Root analytic conductor: |
1.39296 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ243(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 243, ( :1/2), −0.318+0.947i)
|
Particular Values
L(1) |
≈ |
0.137142−0.190817i |
L(21) |
≈ |
0.137142−0.190817i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.610−1.62i)T |
good | 2 | 1+(2.60+0.724i)T+(1.71+1.03i)T2 |
| 5 | 1+(1.88−0.0730i)T+(4.98−0.387i)T2 |
| 7 | 1+(3.79+0.594i)T+(6.66+2.13i)T2 |
| 11 | 1+(0.256+1.87i)T+(−10.5+2.94i)T2 |
| 13 | 1+(−3.67+5.35i)T+(−4.68−12.1i)T2 |
| 17 | 1+(−3.18+1.59i)T+(10.1−13.6i)T2 |
| 19 | 1+(0.0127+0.219i)T+(−18.8+2.20i)T2 |
| 23 | 1+(−1.10+2.85i)T+(−17.0−15.4i)T2 |
| 29 | 1+(−0.913−0.653i)T+(9.38+27.4i)T2 |
| 31 | 1+(−0.433+0.496i)T+(−4.19−30.7i)T2 |
| 37 | 1+(3.46+4.65i)T+(−10.6+35.4i)T2 |
| 41 | 1+(0.698−2.71i)T+(−35.8−19.8i)T2 |
| 43 | 1+(8.61+7.81i)T+(4.16+42.7i)T2 |
| 47 | 1+(3.40+3.90i)T+(−6.36+46.5i)T2 |
| 53 | 1+(1.02−5.78i)T+(−49.8−18.1i)T2 |
| 59 | 1+(6.66−2.72i)T+(42.1−41.3i)T2 |
| 61 | 1+(−3.41+2.06i)T+(28.4−53.9i)T2 |
| 67 | 1+(6.03−4.31i)T+(21.6−63.3i)T2 |
| 71 | 1+(3.34+11.1i)T+(−59.3+39.0i)T2 |
| 73 | 1+(11.2−2.66i)T+(65.2−32.7i)T2 |
| 79 | 1+(0.372−0.365i)T+(1.53−78.9i)T2 |
| 83 | 1+(−0.659−2.55i)T+(−72.6+40.0i)T2 |
| 89 | 1+(0.664−2.21i)T+(−74.3−48.9i)T2 |
| 97 | 1+(−17.6−0.686i)T+(96.7+7.51i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.33164354670492938667472889756, −10.44827331546384547070624654907, −10.04085785609870887212798848707, −8.937653077015617205653421855886, −8.285020265518967843708520402791, −7.36921801831389914826709349684, −5.98674154152495445395400267493, −3.48774101047068864139207620643, −3.10210692828041069478943617180, −0.32221983559311624037935492951,
1.59254559808787157173114408178, 3.29599366873943123928264400251, 6.13821745160568320622517278165, 6.72006962938510144768769019424, 7.58556064813340134431054813517, 8.477729039052764424583035789922, 9.262114951200628914694003028870, 10.05089169310510116685926319506, 11.45930879613384763667006499787, 11.99391193355370979821016736658