L(s) = 1 | − 0.777·2-s − 1.39·4-s − 2.37·5-s − 2.50·7-s + 2.64·8-s + 1.84·10-s − 3.14·11-s + 1.33·13-s + 1.94·14-s + 0.736·16-s − 6.27·17-s + 8.06·19-s + 3.31·20-s + 2.44·22-s − 4.05·23-s + 0.647·25-s − 1.03·26-s + 3.48·28-s + 9.28·29-s + 2.83·31-s − 5.85·32-s + 4.87·34-s + 5.94·35-s + 5.53·37-s − 6.27·38-s − 6.27·40-s + 7.10·41-s + ⋯ |
L(s) = 1 | − 0.549·2-s − 0.697·4-s − 1.06·5-s − 0.945·7-s + 0.933·8-s + 0.584·10-s − 0.947·11-s + 0.370·13-s + 0.519·14-s + 0.184·16-s − 1.52·17-s + 1.85·19-s + 0.741·20-s + 0.520·22-s − 0.845·23-s + 0.129·25-s − 0.203·26-s + 0.659·28-s + 1.72·29-s + 0.508·31-s − 1.03·32-s + 0.836·34-s + 1.00·35-s + 0.909·37-s − 1.01·38-s − 0.992·40-s + 1.10·41-s + ⋯ |
Λ(s)=(=(729s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(729s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.5018737572 |
L(21) |
≈ |
0.5018737572 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
good | 2 | 1+0.777T+2T2 |
| 5 | 1+2.37T+5T2 |
| 7 | 1+2.50T+7T2 |
| 11 | 1+3.14T+11T2 |
| 13 | 1−1.33T+13T2 |
| 17 | 1+6.27T+17T2 |
| 19 | 1−8.06T+19T2 |
| 23 | 1+4.05T+23T2 |
| 29 | 1−9.28T+29T2 |
| 31 | 1−2.83T+31T2 |
| 37 | 1−5.53T+37T2 |
| 41 | 1−7.10T+41T2 |
| 43 | 1−2.33T+43T2 |
| 47 | 1−4.61T+47T2 |
| 53 | 1+0.135T+53T2 |
| 59 | 1−3.99T+59T2 |
| 61 | 1−0.341T+61T2 |
| 67 | 1−10.1T+67T2 |
| 71 | 1+8.19T+71T2 |
| 73 | 1+12.3T+73T2 |
| 79 | 1−4.08T+79T2 |
| 83 | 1+0.913T+83T2 |
| 89 | 1−3.72T+89T2 |
| 97 | 1+5.99T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.20222123188108201090754213599, −9.552175772106926569770528124177, −8.634623227497148766485338745519, −7.922767231031994151139273256571, −7.20315680453053910947914496554, −6.00811829758901071870828606034, −4.76125146347665162354437039961, −3.94904872901037551523882451512, −2.80807081801876942619912520470, −0.62934138515479486615391030088,
0.62934138515479486615391030088, 2.80807081801876942619912520470, 3.94904872901037551523882451512, 4.76125146347665162354437039961, 6.00811829758901071870828606034, 7.20315680453053910947914496554, 7.922767231031994151139273256571, 8.634623227497148766485338745519, 9.552175772106926569770528124177, 10.20222123188108201090754213599