L(s) = 1 | − 2.40·2-s + 3.76·4-s + 0.0930·5-s − 0.579·7-s − 4.24·8-s − 0.223·10-s − 3.09·11-s + 4.20·13-s + 1.39·14-s + 2.66·16-s − 1.99·17-s − 3.84·19-s + 0.350·20-s + 7.42·22-s − 4.45·23-s − 4.99·25-s − 10.0·26-s − 2.18·28-s + 6.39·29-s + 1.65·31-s + 2.10·32-s + 4.78·34-s − 0.0539·35-s + 4.03·37-s + 9.23·38-s − 0.395·40-s − 1.09·41-s + ⋯ |
L(s) = 1 | − 1.69·2-s + 1.88·4-s + 0.0416·5-s − 0.219·7-s − 1.50·8-s − 0.0706·10-s − 0.932·11-s + 1.16·13-s + 0.372·14-s + 0.665·16-s − 0.482·17-s − 0.882·19-s + 0.0784·20-s + 1.58·22-s − 0.928·23-s − 0.998·25-s − 1.97·26-s − 0.412·28-s + 1.18·29-s + 0.297·31-s + 0.371·32-s + 0.820·34-s − 0.00912·35-s + 0.662·37-s + 1.49·38-s − 0.0624·40-s − 0.171·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 + 2.40T + 2T^{2} \) |
| 5 | \( 1 - 0.0930T + 5T^{2} \) |
| 7 | \( 1 + 0.579T + 7T^{2} \) |
| 11 | \( 1 + 3.09T + 11T^{2} \) |
| 13 | \( 1 - 4.20T + 13T^{2} \) |
| 17 | \( 1 + 1.99T + 17T^{2} \) |
| 19 | \( 1 + 3.84T + 19T^{2} \) |
| 23 | \( 1 + 4.45T + 23T^{2} \) |
| 29 | \( 1 - 6.39T + 29T^{2} \) |
| 31 | \( 1 - 1.65T + 31T^{2} \) |
| 37 | \( 1 - 4.03T + 37T^{2} \) |
| 41 | \( 1 + 1.09T + 41T^{2} \) |
| 43 | \( 1 + 6.90T + 43T^{2} \) |
| 47 | \( 1 - 3.59T + 47T^{2} \) |
| 53 | \( 1 - 5.40T + 53T^{2} \) |
| 59 | \( 1 + 10.2T + 59T^{2} \) |
| 61 | \( 1 + 13.1T + 61T^{2} \) |
| 67 | \( 1 + 8.83T + 67T^{2} \) |
| 71 | \( 1 - 1.14T + 71T^{2} \) |
| 73 | \( 1 - 0.195T + 73T^{2} \) |
| 79 | \( 1 + 7.20T + 79T^{2} \) |
| 83 | \( 1 + 14.9T + 83T^{2} \) |
| 89 | \( 1 + 1.55T + 89T^{2} \) |
| 97 | \( 1 - 5.29T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.01295853930506894902884859787, −9.026208247321778619573227470580, −8.306305418352720175676067053459, −7.76859638391169032683917969800, −6.60701432257266788520877779125, −5.95809874712577181210718782332, −4.35498958548368895676105017199, −2.82521821242815915221485454620, −1.64566082767815986874265981994, 0,
1.64566082767815986874265981994, 2.82521821242815915221485454620, 4.35498958548368895676105017199, 5.95809874712577181210718782332, 6.60701432257266788520877779125, 7.76859638391169032683917969800, 8.306305418352720175676067053459, 9.026208247321778619573227470580, 10.01295853930506894902884859787