Properties

Label 2-3e6-1.1-c5-0-69
Degree $2$
Conductor $729$
Sign $1$
Analytic cond. $116.919$
Root an. cond. $10.8129$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9.35·2-s + 55.5·4-s + 63.9·5-s + 207.·7-s − 220.·8-s − 598.·10-s + 221.·11-s − 10.6·13-s − 1.93e3·14-s + 287.·16-s + 1.73e3·17-s − 2.11e3·19-s + 3.55e3·20-s − 2.07e3·22-s − 2.69e3·23-s + 959.·25-s + 100.·26-s + 1.15e4·28-s − 2.67e3·29-s − 6.09e3·31-s + 4.37e3·32-s − 1.62e4·34-s + 1.32e4·35-s + 5.66e3·37-s + 1.97e4·38-s − 1.41e4·40-s + 8.02e3·41-s + ⋯
L(s)  = 1  − 1.65·2-s + 1.73·4-s + 1.14·5-s + 1.59·7-s − 1.22·8-s − 1.89·10-s + 0.551·11-s − 0.0175·13-s − 2.64·14-s + 0.281·16-s + 1.45·17-s − 1.34·19-s + 1.98·20-s − 0.912·22-s − 1.06·23-s + 0.307·25-s + 0.0290·26-s + 2.77·28-s − 0.589·29-s − 1.13·31-s + 0.754·32-s − 2.41·34-s + 1.82·35-s + 0.680·37-s + 2.21·38-s − 1.39·40-s + 0.745·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(729\)    =    \(3^{6}\)
Sign: $1$
Analytic conductor: \(116.919\)
Root analytic conductor: \(10.8129\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 729,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.676441864\)
\(L(\frac12)\) \(\approx\) \(1.676441864\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + 9.35T + 32T^{2} \)
5 \( 1 - 63.9T + 3.12e3T^{2} \)
7 \( 1 - 207.T + 1.68e4T^{2} \)
11 \( 1 - 221.T + 1.61e5T^{2} \)
13 \( 1 + 10.6T + 3.71e5T^{2} \)
17 \( 1 - 1.73e3T + 1.41e6T^{2} \)
19 \( 1 + 2.11e3T + 2.47e6T^{2} \)
23 \( 1 + 2.69e3T + 6.43e6T^{2} \)
29 \( 1 + 2.67e3T + 2.05e7T^{2} \)
31 \( 1 + 6.09e3T + 2.86e7T^{2} \)
37 \( 1 - 5.66e3T + 6.93e7T^{2} \)
41 \( 1 - 8.02e3T + 1.15e8T^{2} \)
43 \( 1 - 1.10e4T + 1.47e8T^{2} \)
47 \( 1 - 1.21e4T + 2.29e8T^{2} \)
53 \( 1 - 1.86e4T + 4.18e8T^{2} \)
59 \( 1 - 5.65e3T + 7.14e8T^{2} \)
61 \( 1 + 4.91e4T + 8.44e8T^{2} \)
67 \( 1 - 5.76e4T + 1.35e9T^{2} \)
71 \( 1 - 2.92e4T + 1.80e9T^{2} \)
73 \( 1 - 4.35e3T + 2.07e9T^{2} \)
79 \( 1 + 1.28e4T + 3.07e9T^{2} \)
83 \( 1 - 5.69e4T + 3.93e9T^{2} \)
89 \( 1 - 3.48e4T + 5.58e9T^{2} \)
97 \( 1 + 9.76e3T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.517815234445161388487989675499, −8.889275372700844385023487570664, −7.999892390811646236857243145484, −7.47790417840600066290528067590, −6.23436197020541093160367183392, −5.47383074298732466679372009308, −4.13562075546686682506134653176, −2.22407494918787073519019477577, −1.74387670174608726266780138761, −0.816899656250716559898207228005, 0.816899656250716559898207228005, 1.74387670174608726266780138761, 2.22407494918787073519019477577, 4.13562075546686682506134653176, 5.47383074298732466679372009308, 6.23436197020541093160367183392, 7.47790417840600066290528067590, 7.999892390811646236857243145484, 8.889275372700844385023487570664, 9.517815234445161388487989675499

Graph of the $Z$-function along the critical line