L(s) = 1 | + (1.83 − 0.510i)2-s + (1.39 − 0.841i)4-s + (−2.94 − 0.114i)5-s + (−2.67 + 0.417i)7-s + (−0.484 + 0.513i)8-s + (−5.46 + 1.29i)10-s + (−0.589 + 4.31i)11-s + (1.84 + 2.69i)13-s + (−4.68 + 2.13i)14-s + (−2.14 + 4.07i)16-s + (−4.70 − 2.36i)17-s + (0.0335 − 0.575i)19-s + (−4.20 + 2.32i)20-s + (1.12 + 8.21i)22-s + (−2.84 − 7.36i)23-s + ⋯ |
L(s) = 1 | + (1.29 − 0.361i)2-s + (0.697 − 0.420i)4-s + (−1.31 − 0.0511i)5-s + (−1.00 + 0.157i)7-s + (−0.171 + 0.181i)8-s + (−1.72 + 0.409i)10-s + (−0.177 + 1.30i)11-s + (0.511 + 0.746i)13-s + (−1.25 + 0.569i)14-s + (−0.536 + 1.01i)16-s + (−1.14 − 0.572i)17-s + (0.00769 − 0.132i)19-s + (−0.940 + 0.519i)20-s + (0.239 + 1.75i)22-s + (−0.592 − 1.53i)23-s + ⋯ |
Λ(s)=(=(729s/2ΓC(s)L(s)(−0.538−0.842i)Λ(2−s)
Λ(s)=(=(729s/2ΓC(s+1/2)L(s)(−0.538−0.842i)Λ(1−s)
Degree: |
2 |
Conductor: |
729
= 36
|
Sign: |
−0.538−0.842i
|
Analytic conductor: |
5.82109 |
Root analytic conductor: |
2.41269 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ729(613,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 729, ( :1/2), −0.538−0.842i)
|
Particular Values
L(1) |
≈ |
0.399009+0.728388i |
L(21) |
≈ |
0.399009+0.728388i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
good | 2 | 1+(−1.83+0.510i)T+(1.71−1.03i)T2 |
| 5 | 1+(2.94+0.114i)T+(4.98+0.387i)T2 |
| 7 | 1+(2.67−0.417i)T+(6.66−2.13i)T2 |
| 11 | 1+(0.589−4.31i)T+(−10.5−2.94i)T2 |
| 13 | 1+(−1.84−2.69i)T+(−4.68+12.1i)T2 |
| 17 | 1+(4.70+2.36i)T+(10.1+13.6i)T2 |
| 19 | 1+(−0.0335+0.575i)T+(−18.8−2.20i)T2 |
| 23 | 1+(2.84+7.36i)T+(−17.0+15.4i)T2 |
| 29 | 1+(−0.495+0.353i)T+(9.38−27.4i)T2 |
| 31 | 1+(−5.02−5.75i)T+(−4.19+30.7i)T2 |
| 37 | 1+(−1.86+2.50i)T+(−10.6−35.4i)T2 |
| 41 | 1+(−2.17−8.45i)T+(−35.8+19.8i)T2 |
| 43 | 1+(−0.623+0.565i)T+(4.16−42.7i)T2 |
| 47 | 1+(5.83−6.68i)T+(−6.36−46.5i)T2 |
| 53 | 1+(2.35+13.3i)T+(−49.8+18.1i)T2 |
| 59 | 1+(6.01+2.45i)T+(42.1+41.3i)T2 |
| 61 | 1+(−4.92−2.97i)T+(28.4+53.9i)T2 |
| 67 | 1+(7.89+5.64i)T+(21.6+63.3i)T2 |
| 71 | 1+(0.635−2.12i)T+(−59.3−39.0i)T2 |
| 73 | 1+(5.07+1.20i)T+(65.2+32.7i)T2 |
| 79 | 1+(−8.20−8.04i)T+(1.53+78.9i)T2 |
| 83 | 1+(3.22−12.5i)T+(−72.6−40.0i)T2 |
| 89 | 1+(1.18+3.94i)T+(−74.3+48.9i)T2 |
| 97 | 1+(4.78−0.185i)T+(96.7−7.51i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.12416451383753354706521747290, −9.959441970844358182300496917015, −8.959119447884363859958893001523, −8.069847142707966981507871510442, −6.80370921282931591436321959975, −6.36069177766074974930789357329, −4.66751561536893385813620328753, −4.43738371910145522110474319995, −3.36014696114512785849730245534, −2.35919205136858386488206651789,
0.26576634062613349735267451467, 3.07320540737956303202203609442, 3.63420687764808119394126732497, 4.38404617777074681005215367667, 5.77065207579773059229778344192, 6.22798994224766678585922646448, 7.32751850478936638643202538130, 8.158749230173064021925089954067, 9.111136949166655233518736873257, 10.29976204939121383367561171248