Properties

Label 2-3e6-27.7-c1-0-0
Degree $2$
Conductor $729$
Sign $-0.686 + 0.727i$
Analytic cond. $5.82109$
Root an. cond. $2.41269$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.62 + 0.592i)2-s + (0.766 − 0.642i)4-s + (0.601 + 3.41i)5-s + (−0.766 − 0.642i)7-s + (0.866 − 1.50i)8-s + (−3 − 5.19i)10-s + (−0.601 + 3.41i)11-s + (−4.69 − 1.71i)13-s + (1.62 + 0.592i)14-s + (−0.868 + 4.92i)16-s + (0.5 − 0.866i)19-s + (2.65 + 2.22i)20-s + (−1.04 − 5.90i)22-s + (−5.30 + 4.45i)23-s + (−6.57 + 2.39i)25-s + 8.66·26-s + ⋯
L(s)  = 1  + (−1.15 + 0.418i)2-s + (0.383 − 0.321i)4-s + (0.269 + 1.52i)5-s + (−0.289 − 0.242i)7-s + (0.306 − 0.530i)8-s + (−0.948 − 1.64i)10-s + (−0.181 + 1.02i)11-s + (−1.30 − 0.474i)13-s + (0.434 + 0.158i)14-s + (−0.217 + 1.23i)16-s + (0.114 − 0.198i)19-s + (0.593 + 0.497i)20-s + (−0.222 − 1.25i)22-s + (−1.10 + 0.928i)23-s + (−1.31 + 0.478i)25-s + 1.69·26-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.686 + 0.727i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.686 + 0.727i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(729\)    =    \(3^{6}\)
Sign: $-0.686 + 0.727i$
Analytic conductor: \(5.82109\)
Root analytic conductor: \(2.41269\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{729} (163, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 729,\ (\ :1/2),\ -0.686 + 0.727i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0849221 - 0.196871i\)
\(L(\frac12)\) \(\approx\) \(0.0849221 - 0.196871i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + (1.62 - 0.592i)T + (1.53 - 1.28i)T^{2} \)
5 \( 1 + (-0.601 - 3.41i)T + (-4.69 + 1.71i)T^{2} \)
7 \( 1 + (0.766 + 0.642i)T + (1.21 + 6.89i)T^{2} \)
11 \( 1 + (0.601 - 3.41i)T + (-10.3 - 3.76i)T^{2} \)
13 \( 1 + (4.69 + 1.71i)T + (9.95 + 8.35i)T^{2} \)
17 \( 1 + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (-0.5 + 0.866i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (5.30 - 4.45i)T + (3.99 - 22.6i)T^{2} \)
29 \( 1 + (-3.25 + 1.18i)T + (22.2 - 18.6i)T^{2} \)
31 \( 1 + (-3.83 + 3.21i)T + (5.38 - 30.5i)T^{2} \)
37 \( 1 + (-0.5 - 0.866i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (3.25 + 1.18i)T + (31.4 + 26.3i)T^{2} \)
43 \( 1 + (0.173 - 0.984i)T + (-40.4 - 14.7i)T^{2} \)
47 \( 1 + (2.65 + 2.22i)T + (8.16 + 46.2i)T^{2} \)
53 \( 1 + 10.3T + 53T^{2} \)
59 \( 1 + (-0.601 - 3.41i)T + (-55.4 + 20.1i)T^{2} \)
61 \( 1 + (-1.53 - 1.28i)T + (10.5 + 60.0i)T^{2} \)
67 \( 1 + (7.51 + 2.73i)T + (51.3 + 43.0i)T^{2} \)
71 \( 1 + (5.19 + 9i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (1 - 1.73i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (-0.939 + 0.342i)T + (60.5 - 50.7i)T^{2} \)
83 \( 1 + (6.51 - 2.36i)T + (63.5 - 53.3i)T^{2} \)
89 \( 1 + (5.19 - 9i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (-2.95 + 16.7i)T + (-91.1 - 33.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.37734859859672889569519109745, −9.978426038081451576149715442264, −9.568081739921691600570863820913, −8.146393916877400854772921045049, −7.40534810118907594995579701909, −6.96484897228611408026422422170, −6.04615678039507940948291272271, −4.56536829063430762538325492335, −3.23168591085208729326122769740, −2.06873494140408445931418024130, 0.16261469320101544249087164867, 1.44927442163203156253429363928, 2.69807831960993803829691003113, 4.50257540807675856986974457865, 5.21657060901639375665413963958, 6.29961580013877011494238769413, 7.74107228751914331902975421069, 8.456655767041508436778629654314, 8.990777945500777974402238667564, 9.766320771936237590222635640635

Graph of the $Z$-function along the critical line