L(s) = 1 | + (0.951 − 0.309i)3-s + 1.61i·7-s + (−1.30 + 0.951i)13-s + (−0.587 − 0.190i)19-s + (0.500 + 1.53i)21-s + (−0.587 + 0.809i)23-s + (−0.587 + 0.809i)27-s + (−0.190 − 0.587i)29-s + (0.951 + 0.309i)31-s + (−0.809 + 0.587i)37-s + (−0.951 + 1.30i)39-s − 0.618i·43-s + (1.53 − 0.5i)47-s − 1.61·49-s + (0.309 + 0.951i)53-s + ⋯ |
L(s) = 1 | + (0.951 − 0.309i)3-s + 1.61i·7-s + (−1.30 + 0.951i)13-s + (−0.587 − 0.190i)19-s + (0.500 + 1.53i)21-s + (−0.587 + 0.809i)23-s + (−0.587 + 0.809i)27-s + (−0.190 − 0.587i)29-s + (0.951 + 0.309i)31-s + (−0.809 + 0.587i)37-s + (−0.951 + 1.30i)39-s − 0.618i·43-s + (1.53 − 0.5i)47-s − 1.61·49-s + (0.309 + 0.951i)53-s + ⋯ |
Λ(s)=(=(4000s/2ΓC(s)L(s)(−0.0314−0.999i)Λ(1−s)
Λ(s)=(=(4000s/2ΓC(s)L(s)(−0.0314−0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
4000
= 25⋅53
|
Sign: |
−0.0314−0.999i
|
Analytic conductor: |
1.99626 |
Root analytic conductor: |
1.41289 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4000(1951,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 4000, ( :0), −0.0314−0.999i)
|
Particular Values
L(21) |
≈ |
1.349230309 |
L(21) |
≈ |
1.349230309 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+(−0.951+0.309i)T+(0.809−0.587i)T2 |
| 7 | 1−1.61iT−T2 |
| 11 | 1+(−0.309−0.951i)T2 |
| 13 | 1+(1.30−0.951i)T+(0.309−0.951i)T2 |
| 17 | 1+(−0.809−0.587i)T2 |
| 19 | 1+(0.587+0.190i)T+(0.809+0.587i)T2 |
| 23 | 1+(0.587−0.809i)T+(−0.309−0.951i)T2 |
| 29 | 1+(0.190+0.587i)T+(−0.809+0.587i)T2 |
| 31 | 1+(−0.951−0.309i)T+(0.809+0.587i)T2 |
| 37 | 1+(0.809−0.587i)T+(0.309−0.951i)T2 |
| 41 | 1+(0.309−0.951i)T2 |
| 43 | 1+0.618iT−T2 |
| 47 | 1+(−1.53+0.5i)T+(0.809−0.587i)T2 |
| 53 | 1+(−0.309−0.951i)T+(−0.809+0.587i)T2 |
| 59 | 1+(−0.363−0.5i)T+(−0.309+0.951i)T2 |
| 61 | 1+(0.809+0.587i)T+(0.309+0.951i)T2 |
| 67 | 1+(0.809+0.587i)T2 |
| 71 | 1+(−1.53+0.5i)T+(0.809−0.587i)T2 |
| 73 | 1+(−0.809−0.587i)T+(0.309+0.951i)T2 |
| 79 | 1+(0.587−0.190i)T+(0.809−0.587i)T2 |
| 83 | 1+(−0.951−0.309i)T+(0.809+0.587i)T2 |
| 89 | 1+(0.309+0.951i)T2 |
| 97 | 1+(0.5+1.53i)T+(−0.809+0.587i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.746491133000433485963573418523, −8.253595338696294372357407372546, −7.46124575027894671271054810777, −6.72845185826677989158284366430, −5.80147462905595997649701603856, −5.15902263361418326480020731209, −4.22706954287113224219582222954, −3.10860307334345410814658634908, −2.32371117744549810633837965577, −1.95519868848024717364140168301,
0.61141137689783561563809075641, 2.17167303544939574482900598708, 2.99886694531422314760539862061, 3.84792808343963239516333998619, 4.40461626678952350293642083608, 5.31796458978335664885111823196, 6.40662388691243263686420986219, 7.14483210249897194686944817386, 7.87253386156096891443956916207, 8.241029378551049914888964238678