L(s) = 1 | + (0.904 − 0.425i)5-s + (−0.770 + 0.637i)9-s + (−0.180 + 1.91i)13-s + (−1.22 + 1.57i)17-s + (0.637 − 0.770i)25-s + (−0.340 + 0.362i)29-s + (−1.57 + 0.934i)37-s + (−0.233 + 0.0922i)41-s + (−0.425 + 0.904i)45-s + (−0.951 + 0.309i)49-s + (1.91 + 0.557i)53-s + (−1.68 − 0.666i)61-s + (0.650 + 1.80i)65-s + (0.360 − 1.61i)73-s + (0.187 − 0.982i)81-s + ⋯ |
L(s) = 1 | + (0.904 − 0.425i)5-s + (−0.770 + 0.637i)9-s + (−0.180 + 1.91i)13-s + (−1.22 + 1.57i)17-s + (0.637 − 0.770i)25-s + (−0.340 + 0.362i)29-s + (−1.57 + 0.934i)37-s + (−0.233 + 0.0922i)41-s + (−0.425 + 0.904i)45-s + (−0.951 + 0.309i)49-s + (1.91 + 0.557i)53-s + (−1.68 − 0.666i)61-s + (0.650 + 1.80i)65-s + (0.360 − 1.61i)73-s + (0.187 − 0.982i)81-s + ⋯ |
Λ(s)=(=(4000s/2ΓC(s)L(s)(0.0439−0.999i)Λ(1−s)
Λ(s)=(=(4000s/2ΓC(s)L(s)(0.0439−0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
4000
= 25⋅53
|
Sign: |
0.0439−0.999i
|
Analytic conductor: |
1.99626 |
Root analytic conductor: |
1.41289 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4000(353,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 4000, ( :0), 0.0439−0.999i)
|
Particular Values
L(21) |
≈ |
1.112608504 |
L(21) |
≈ |
1.112608504 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−0.904+0.425i)T |
good | 3 | 1+(0.770−0.637i)T2 |
| 7 | 1+(0.951−0.309i)T2 |
| 11 | 1+(−0.992−0.125i)T2 |
| 13 | 1+(0.180−1.91i)T+(−0.982−0.187i)T2 |
| 17 | 1+(1.22−1.57i)T+(−0.248−0.968i)T2 |
| 19 | 1+(0.637−0.770i)T2 |
| 23 | 1+(−0.684+0.728i)T2 |
| 29 | 1+(0.340−0.362i)T+(−0.0627−0.998i)T2 |
| 31 | 1+(0.968−0.248i)T2 |
| 37 | 1+(1.57−0.934i)T+(0.481−0.876i)T2 |
| 41 | 1+(0.233−0.0922i)T+(0.728−0.684i)T2 |
| 43 | 1+(−0.587−0.809i)T2 |
| 47 | 1+(0.368+0.929i)T2 |
| 53 | 1+(−1.91−0.557i)T+(0.844+0.535i)T2 |
| 59 | 1+(0.425+0.904i)T2 |
| 61 | 1+(1.68+0.666i)T+(0.728+0.684i)T2 |
| 67 | 1+(−0.998−0.0627i)T2 |
| 71 | 1+(−0.929+0.368i)T2 |
| 73 | 1+(−0.360+1.61i)T+(−0.904−0.425i)T2 |
| 79 | 1+(0.637+0.770i)T2 |
| 83 | 1+(−0.770−0.637i)T2 |
| 89 | 1+(−1.68+1.06i)T+(0.425−0.904i)T2 |
| 97 | 1+(−1.95+0.0613i)T+(0.998−0.0627i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.874010955438326469863798047493, −8.337303618025485506285461060496, −7.25309960497273008311741067376, −6.39919206479778828177046974491, −6.03529669272984719113394541920, −4.93470315465420772828649275714, −4.49847630707836871438384014257, −3.38407848570269008447101557545, −2.02817979536375825319690222686, −1.81733992241110653377350178973,
0.56836580544248936518399511761, 2.19155316805167939535886148509, 2.87884832194065599491588422713, 3.58936438692619066186152882130, 4.98606595396468483822252876695, 5.46936325888064102077649216571, 6.18416975240049498803720118342, 6.96701814359599445873322334706, 7.60199337770892121189197065627, 8.670935245356631584137728087745