L(s) = 1 | + (0.998 + 0.0627i)5-s + (0.125 + 0.992i)9-s + (−1.45 − 1.12i)13-s + (0.115 + 1.22i)17-s + (0.992 + 0.125i)25-s + (1.65 + 1.05i)29-s + (0.313 + 0.461i)37-s + (1.35 + 0.742i)41-s + (0.0627 + 0.998i)45-s + (−0.587 − 0.809i)49-s + (0.400 + 0.173i)53-s + (1.74 − 0.961i)61-s + (−1.37 − 1.21i)65-s + (0.0540 + 1.72i)73-s + (−0.968 + 0.248i)81-s + ⋯ |
L(s) = 1 | + (0.998 + 0.0627i)5-s + (0.125 + 0.992i)9-s + (−1.45 − 1.12i)13-s + (0.115 + 1.22i)17-s + (0.992 + 0.125i)25-s + (1.65 + 1.05i)29-s + (0.313 + 0.461i)37-s + (1.35 + 0.742i)41-s + (0.0627 + 0.998i)45-s + (−0.587 − 0.809i)49-s + (0.400 + 0.173i)53-s + (1.74 − 0.961i)61-s + (−1.37 − 1.21i)65-s + (0.0540 + 1.72i)73-s + (−0.968 + 0.248i)81-s + ⋯ |
Λ(s)=(=(4000s/2ΓC(s)L(s)(0.805−0.592i)Λ(1−s)
Λ(s)=(=(4000s/2ΓC(s)L(s)(0.805−0.592i)Λ(1−s)
Degree: |
2 |
Conductor: |
4000
= 25⋅53
|
Sign: |
0.805−0.592i
|
Analytic conductor: |
1.99626 |
Root analytic conductor: |
1.41289 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4000(513,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 4000, ( :0), 0.805−0.592i)
|
Particular Values
L(21) |
≈ |
1.510828596 |
L(21) |
≈ |
1.510828596 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−0.998−0.0627i)T |
good | 3 | 1+(−0.125−0.992i)T2 |
| 7 | 1+(0.587+0.809i)T2 |
| 11 | 1+(−0.637−0.770i)T2 |
| 13 | 1+(1.45+1.12i)T+(0.248+0.968i)T2 |
| 17 | 1+(−0.115−1.22i)T+(−0.982+0.187i)T2 |
| 19 | 1+(0.992+0.125i)T2 |
| 23 | 1+(0.844+0.535i)T2 |
| 29 | 1+(−1.65−1.05i)T+(0.425+0.904i)T2 |
| 31 | 1+(−0.187−0.982i)T2 |
| 37 | 1+(−0.313−0.461i)T+(−0.368+0.929i)T2 |
| 41 | 1+(−1.35−0.742i)T+(0.535+0.844i)T2 |
| 43 | 1+(0.951+0.309i)T2 |
| 47 | 1+(0.481−0.876i)T2 |
| 53 | 1+(−0.400−0.173i)T+(0.684+0.728i)T2 |
| 59 | 1+(−0.0627+0.998i)T2 |
| 61 | 1+(−1.74+0.961i)T+(0.535−0.844i)T2 |
| 67 | 1+(0.904+0.425i)T2 |
| 71 | 1+(0.876+0.481i)T2 |
| 73 | 1+(−0.0540−1.72i)T+(−0.998+0.0627i)T2 |
| 79 | 1+(0.992−0.125i)T2 |
| 83 | 1+(0.125−0.992i)T2 |
| 89 | 1+(1.23−1.31i)T+(−0.0627−0.998i)T2 |
| 97 | 1+(0.436+1.95i)T+(−0.904+0.425i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.469097518866360041246910705637, −8.135435194824706194904752879781, −7.19167664827508920665233782070, −6.52577756104116946032307709263, −5.54941526208267629478417721304, −5.15169915532339738420616685969, −4.31028928923584993768301284546, −2.95195749917509325243090907685, −2.40663841312632066953290398243, −1.33238240438493452323500456230,
0.923927910640083246920424549825, 2.27373952278604018903512389007, 2.79742748460050036153195778205, 4.13233933291251547941404418033, 4.78253412800832602722936549719, 5.60599373371858127891340378522, 6.46530090663555683690812610499, 6.93301279055503909094400413185, 7.69855555758460980729590990344, 8.812417774399156650407433007622