L(s) = 1 | + (0.998 + 0.0627i)5-s + (0.125 + 0.992i)9-s + (−1.45 − 1.12i)13-s + (0.115 + 1.22i)17-s + (0.992 + 0.125i)25-s + (1.65 + 1.05i)29-s + (0.313 + 0.461i)37-s + (1.35 + 0.742i)41-s + (0.0627 + 0.998i)45-s + (−0.587 − 0.809i)49-s + (0.400 + 0.173i)53-s + (1.74 − 0.961i)61-s + (−1.37 − 1.21i)65-s + (0.0540 + 1.72i)73-s + (−0.968 + 0.248i)81-s + ⋯ |
L(s) = 1 | + (0.998 + 0.0627i)5-s + (0.125 + 0.992i)9-s + (−1.45 − 1.12i)13-s + (0.115 + 1.22i)17-s + (0.992 + 0.125i)25-s + (1.65 + 1.05i)29-s + (0.313 + 0.461i)37-s + (1.35 + 0.742i)41-s + (0.0627 + 0.998i)45-s + (−0.587 − 0.809i)49-s + (0.400 + 0.173i)53-s + (1.74 − 0.961i)61-s + (−1.37 − 1.21i)65-s + (0.0540 + 1.72i)73-s + (−0.968 + 0.248i)81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.805 - 0.592i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.805 - 0.592i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.510828596\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.510828596\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.998 - 0.0627i)T \) |
good | 3 | \( 1 + (-0.125 - 0.992i)T^{2} \) |
| 7 | \( 1 + (0.587 + 0.809i)T^{2} \) |
| 11 | \( 1 + (-0.637 - 0.770i)T^{2} \) |
| 13 | \( 1 + (1.45 + 1.12i)T + (0.248 + 0.968i)T^{2} \) |
| 17 | \( 1 + (-0.115 - 1.22i)T + (-0.982 + 0.187i)T^{2} \) |
| 19 | \( 1 + (0.992 + 0.125i)T^{2} \) |
| 23 | \( 1 + (0.844 + 0.535i)T^{2} \) |
| 29 | \( 1 + (-1.65 - 1.05i)T + (0.425 + 0.904i)T^{2} \) |
| 31 | \( 1 + (-0.187 - 0.982i)T^{2} \) |
| 37 | \( 1 + (-0.313 - 0.461i)T + (-0.368 + 0.929i)T^{2} \) |
| 41 | \( 1 + (-1.35 - 0.742i)T + (0.535 + 0.844i)T^{2} \) |
| 43 | \( 1 + (0.951 + 0.309i)T^{2} \) |
| 47 | \( 1 + (0.481 - 0.876i)T^{2} \) |
| 53 | \( 1 + (-0.400 - 0.173i)T + (0.684 + 0.728i)T^{2} \) |
| 59 | \( 1 + (-0.0627 + 0.998i)T^{2} \) |
| 61 | \( 1 + (-1.74 + 0.961i)T + (0.535 - 0.844i)T^{2} \) |
| 67 | \( 1 + (0.904 + 0.425i)T^{2} \) |
| 71 | \( 1 + (0.876 + 0.481i)T^{2} \) |
| 73 | \( 1 + (-0.0540 - 1.72i)T + (-0.998 + 0.0627i)T^{2} \) |
| 79 | \( 1 + (0.992 - 0.125i)T^{2} \) |
| 83 | \( 1 + (0.125 - 0.992i)T^{2} \) |
| 89 | \( 1 + (1.23 - 1.31i)T + (-0.0627 - 0.998i)T^{2} \) |
| 97 | \( 1 + (0.436 + 1.95i)T + (-0.904 + 0.425i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.469097518866360041246910705637, −8.135435194824706194904752879781, −7.19167664827508920665233782070, −6.52577756104116946032307709263, −5.54941526208267629478417721304, −5.15169915532339738420616685969, −4.31028928923584993768301284546, −2.95195749917509325243090907685, −2.40663841312632066953290398243, −1.33238240438493452323500456230,
0.923927910640083246920424549825, 2.27373952278604018903512389007, 2.79742748460050036153195778205, 4.13233933291251547941404418033, 4.78253412800832602722936549719, 5.60599373371858127891340378522, 6.46530090663555683690812610499, 6.93301279055503909094400413185, 7.69855555758460980729590990344, 8.812417774399156650407433007622