L(s) = 1 | + (−0.904 + 0.425i)5-s + (0.770 − 0.637i)9-s + (0.555 + 0.0525i)13-s + (0.148 + 0.115i)17-s + (0.637 − 0.770i)25-s + (−0.340 + 0.362i)29-s + (−0.404 − 0.683i)37-s + (0.233 − 0.0922i)41-s + (−0.425 + 0.904i)45-s + (0.951 − 0.309i)49-s + (0.0175 − 0.0603i)53-s + (1.68 + 0.666i)61-s + (−0.524 + 0.189i)65-s + (1.09 + 0.245i)73-s + (0.187 − 0.982i)81-s + ⋯ |
L(s) = 1 | + (−0.904 + 0.425i)5-s + (0.770 − 0.637i)9-s + (0.555 + 0.0525i)13-s + (0.148 + 0.115i)17-s + (0.637 − 0.770i)25-s + (−0.340 + 0.362i)29-s + (−0.404 − 0.683i)37-s + (0.233 − 0.0922i)41-s + (−0.425 + 0.904i)45-s + (0.951 − 0.309i)49-s + (0.0175 − 0.0603i)53-s + (1.68 + 0.666i)61-s + (−0.524 + 0.189i)65-s + (1.09 + 0.245i)73-s + (0.187 − 0.982i)81-s + ⋯ |
Λ(s)=(=(4000s/2ΓC(s)L(s)(0.999+0.0439i)Λ(1−s)
Λ(s)=(=(4000s/2ΓC(s)L(s)(0.999+0.0439i)Λ(1−s)
Degree: |
2 |
Conductor: |
4000
= 25⋅53
|
Sign: |
0.999+0.0439i
|
Analytic conductor: |
1.99626 |
Root analytic conductor: |
1.41289 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4000(897,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 4000, ( :0), 0.999+0.0439i)
|
Particular Values
L(21) |
≈ |
1.187606248 |
L(21) |
≈ |
1.187606248 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(0.904−0.425i)T |
good | 3 | 1+(−0.770+0.637i)T2 |
| 7 | 1+(−0.951+0.309i)T2 |
| 11 | 1+(−0.992−0.125i)T2 |
| 13 | 1+(−0.555−0.0525i)T+(0.982+0.187i)T2 |
| 17 | 1+(−0.148−0.115i)T+(0.248+0.968i)T2 |
| 19 | 1+(0.637−0.770i)T2 |
| 23 | 1+(0.684−0.728i)T2 |
| 29 | 1+(0.340−0.362i)T+(−0.0627−0.998i)T2 |
| 31 | 1+(0.968−0.248i)T2 |
| 37 | 1+(0.404+0.683i)T+(−0.481+0.876i)T2 |
| 41 | 1+(−0.233+0.0922i)T+(0.728−0.684i)T2 |
| 43 | 1+(0.587+0.809i)T2 |
| 47 | 1+(−0.368−0.929i)T2 |
| 53 | 1+(−0.0175+0.0603i)T+(−0.844−0.535i)T2 |
| 59 | 1+(0.425+0.904i)T2 |
| 61 | 1+(−1.68−0.666i)T+(0.728+0.684i)T2 |
| 67 | 1+(0.998+0.0627i)T2 |
| 71 | 1+(−0.929+0.368i)T2 |
| 73 | 1+(−1.09−0.245i)T+(0.904+0.425i)T2 |
| 79 | 1+(0.637+0.770i)T2 |
| 83 | 1+(0.770+0.637i)T2 |
| 89 | 1+(−1.68+1.06i)T+(0.425−0.904i)T2 |
| 97 | 1+(0.0137+0.436i)T+(−0.998+0.0627i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.635657497459925266579849385477, −7.78738895912170723968354377010, −7.16338554340347677225887969595, −6.58944944740045599805596410142, −5.73593379393305119391555410804, −4.71998713997281095182706370104, −3.84406610784438934985087056451, −3.46875807111809548420072972950, −2.23034026282355052912704346301, −0.915823152696376132682575643525,
0.999606620217287016226190991988, 2.14038891335363813846497348116, 3.37233949070061132517144875034, 4.07761999054164066234168643214, 4.80429926087061022184956794349, 5.52244082741293673388484431838, 6.56820303495944578365519835708, 7.29089800720330840724243054872, 7.931636386587508908325756121990, 8.475801249500912044976708730325