L(s) = 1 | + (−0.904 + 0.425i)5-s + (0.770 − 0.637i)9-s + (0.555 + 0.0525i)13-s + (0.148 + 0.115i)17-s + (0.637 − 0.770i)25-s + (−0.340 + 0.362i)29-s + (−0.404 − 0.683i)37-s + (0.233 − 0.0922i)41-s + (−0.425 + 0.904i)45-s + (0.951 − 0.309i)49-s + (0.0175 − 0.0603i)53-s + (1.68 + 0.666i)61-s + (−0.524 + 0.189i)65-s + (1.09 + 0.245i)73-s + (0.187 − 0.982i)81-s + ⋯ |
L(s) = 1 | + (−0.904 + 0.425i)5-s + (0.770 − 0.637i)9-s + (0.555 + 0.0525i)13-s + (0.148 + 0.115i)17-s + (0.637 − 0.770i)25-s + (−0.340 + 0.362i)29-s + (−0.404 − 0.683i)37-s + (0.233 − 0.0922i)41-s + (−0.425 + 0.904i)45-s + (0.951 − 0.309i)49-s + (0.0175 − 0.0603i)53-s + (1.68 + 0.666i)61-s + (−0.524 + 0.189i)65-s + (1.09 + 0.245i)73-s + (0.187 − 0.982i)81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0439i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0439i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.187606248\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.187606248\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.904 - 0.425i)T \) |
good | 3 | \( 1 + (-0.770 + 0.637i)T^{2} \) |
| 7 | \( 1 + (-0.951 + 0.309i)T^{2} \) |
| 11 | \( 1 + (-0.992 - 0.125i)T^{2} \) |
| 13 | \( 1 + (-0.555 - 0.0525i)T + (0.982 + 0.187i)T^{2} \) |
| 17 | \( 1 + (-0.148 - 0.115i)T + (0.248 + 0.968i)T^{2} \) |
| 19 | \( 1 + (0.637 - 0.770i)T^{2} \) |
| 23 | \( 1 + (0.684 - 0.728i)T^{2} \) |
| 29 | \( 1 + (0.340 - 0.362i)T + (-0.0627 - 0.998i)T^{2} \) |
| 31 | \( 1 + (0.968 - 0.248i)T^{2} \) |
| 37 | \( 1 + (0.404 + 0.683i)T + (-0.481 + 0.876i)T^{2} \) |
| 41 | \( 1 + (-0.233 + 0.0922i)T + (0.728 - 0.684i)T^{2} \) |
| 43 | \( 1 + (0.587 + 0.809i)T^{2} \) |
| 47 | \( 1 + (-0.368 - 0.929i)T^{2} \) |
| 53 | \( 1 + (-0.0175 + 0.0603i)T + (-0.844 - 0.535i)T^{2} \) |
| 59 | \( 1 + (0.425 + 0.904i)T^{2} \) |
| 61 | \( 1 + (-1.68 - 0.666i)T + (0.728 + 0.684i)T^{2} \) |
| 67 | \( 1 + (0.998 + 0.0627i)T^{2} \) |
| 71 | \( 1 + (-0.929 + 0.368i)T^{2} \) |
| 73 | \( 1 + (-1.09 - 0.245i)T + (0.904 + 0.425i)T^{2} \) |
| 79 | \( 1 + (0.637 + 0.770i)T^{2} \) |
| 83 | \( 1 + (0.770 + 0.637i)T^{2} \) |
| 89 | \( 1 + (-1.68 + 1.06i)T + (0.425 - 0.904i)T^{2} \) |
| 97 | \( 1 + (0.0137 + 0.436i)T + (-0.998 + 0.0627i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.635657497459925266579849385477, −7.78738895912170723968354377010, −7.16338554340347677225887969595, −6.58944944740045599805596410142, −5.73593379393305119391555410804, −4.71998713997281095182706370104, −3.84406610784438934985087056451, −3.46875807111809548420072972950, −2.23034026282355052912704346301, −0.915823152696376132682575643525,
0.999606620217287016226190991988, 2.14038891335363813846497348116, 3.37233949070061132517144875034, 4.07761999054164066234168643214, 4.80429926087061022184956794349, 5.52244082741293673388484431838, 6.56820303495944578365519835708, 7.29089800720330840724243054872, 7.931636386587508908325756121990, 8.475801249500912044976708730325