L(s) = 1 | + (0.684 + 0.728i)5-s + (0.998 − 0.0627i)9-s + (0.743 − 0.843i)13-s + (1.41 + 0.508i)17-s + (−0.0627 + 0.998i)25-s + (−0.742 − 1.35i)29-s + (−1.01 − 0.0958i)37-s + (−1.75 − 0.450i)41-s + (0.728 + 0.684i)45-s + (−0.951 + 0.309i)49-s + (0.313 − 0.461i)53-s + (1.32 − 0.340i)61-s + (1.12 − 0.0353i)65-s + (0.627 + 1.45i)73-s + (0.992 − 0.125i)81-s + ⋯ |
L(s) = 1 | + (0.684 + 0.728i)5-s + (0.998 − 0.0627i)9-s + (0.743 − 0.843i)13-s + (1.41 + 0.508i)17-s + (−0.0627 + 0.998i)25-s + (−0.742 − 1.35i)29-s + (−1.01 − 0.0958i)37-s + (−1.75 − 0.450i)41-s + (0.728 + 0.684i)45-s + (−0.951 + 0.309i)49-s + (0.313 − 0.461i)53-s + (1.32 − 0.340i)61-s + (1.12 − 0.0353i)65-s + (0.627 + 1.45i)73-s + (0.992 − 0.125i)81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.963 - 0.266i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.963 - 0.266i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.714943846\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.714943846\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.684 - 0.728i)T \) |
good | 3 | \( 1 + (-0.998 + 0.0627i)T^{2} \) |
| 7 | \( 1 + (0.951 - 0.309i)T^{2} \) |
| 11 | \( 1 + (-0.425 + 0.904i)T^{2} \) |
| 13 | \( 1 + (-0.743 + 0.843i)T + (-0.125 - 0.992i)T^{2} \) |
| 17 | \( 1 + (-1.41 - 0.508i)T + (0.770 + 0.637i)T^{2} \) |
| 19 | \( 1 + (-0.0627 + 0.998i)T^{2} \) |
| 23 | \( 1 + (0.481 + 0.876i)T^{2} \) |
| 29 | \( 1 + (0.742 + 1.35i)T + (-0.535 + 0.844i)T^{2} \) |
| 31 | \( 1 + (-0.637 + 0.770i)T^{2} \) |
| 37 | \( 1 + (1.01 + 0.0958i)T + (0.982 + 0.187i)T^{2} \) |
| 41 | \( 1 + (1.75 + 0.450i)T + (0.876 + 0.481i)T^{2} \) |
| 43 | \( 1 + (-0.587 - 0.809i)T^{2} \) |
| 47 | \( 1 + (0.248 - 0.968i)T^{2} \) |
| 53 | \( 1 + (-0.313 + 0.461i)T + (-0.368 - 0.929i)T^{2} \) |
| 59 | \( 1 + (-0.728 + 0.684i)T^{2} \) |
| 61 | \( 1 + (-1.32 + 0.340i)T + (0.876 - 0.481i)T^{2} \) |
| 67 | \( 1 + (0.844 - 0.535i)T^{2} \) |
| 71 | \( 1 + (0.968 + 0.248i)T^{2} \) |
| 73 | \( 1 + (-0.627 - 1.45i)T + (-0.684 + 0.728i)T^{2} \) |
| 79 | \( 1 + (-0.0627 - 0.998i)T^{2} \) |
| 83 | \( 1 + (0.998 + 0.0627i)T^{2} \) |
| 89 | \( 1 + (-0.621 + 1.57i)T + (-0.728 - 0.684i)T^{2} \) |
| 97 | \( 1 + (0.512 - 1.76i)T + (-0.844 - 0.535i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.553860130376247507126641745329, −7.889443828499257562153304375671, −7.15881450732609756463210165828, −6.45752506459838043753464141475, −5.72079247636749501219321714678, −5.11752931329105590825945227523, −3.79299318466904046147138019612, −3.38373275366176879959244188837, −2.17023577444957140787254925945, −1.27043454777770090795485033963,
1.28238903988601333664174999939, 1.82116895637473185427874998180, 3.24442687701479249421595802138, 4.03098322699275004701524266712, 5.02130723905017296570899778406, 5.42221403734480733192675525610, 6.49751364057975111085009532544, 7.01583031967968420876403850497, 7.935076902151283594340775454191, 8.674375553753824008011697437692