L(s) = 1 | + (0.684 + 0.728i)5-s + (0.998 − 0.0627i)9-s + (0.743 − 0.843i)13-s + (1.41 + 0.508i)17-s + (−0.0627 + 0.998i)25-s + (−0.742 − 1.35i)29-s + (−1.01 − 0.0958i)37-s + (−1.75 − 0.450i)41-s + (0.728 + 0.684i)45-s + (−0.951 + 0.309i)49-s + (0.313 − 0.461i)53-s + (1.32 − 0.340i)61-s + (1.12 − 0.0353i)65-s + (0.627 + 1.45i)73-s + (0.992 − 0.125i)81-s + ⋯ |
L(s) = 1 | + (0.684 + 0.728i)5-s + (0.998 − 0.0627i)9-s + (0.743 − 0.843i)13-s + (1.41 + 0.508i)17-s + (−0.0627 + 0.998i)25-s + (−0.742 − 1.35i)29-s + (−1.01 − 0.0958i)37-s + (−1.75 − 0.450i)41-s + (0.728 + 0.684i)45-s + (−0.951 + 0.309i)49-s + (0.313 − 0.461i)53-s + (1.32 − 0.340i)61-s + (1.12 − 0.0353i)65-s + (0.627 + 1.45i)73-s + (0.992 − 0.125i)81-s + ⋯ |
Λ(s)=(=(4000s/2ΓC(s)L(s)(0.963−0.266i)Λ(1−s)
Λ(s)=(=(4000s/2ΓC(s)L(s)(0.963−0.266i)Λ(1−s)
Degree: |
2 |
Conductor: |
4000
= 25⋅53
|
Sign: |
0.963−0.266i
|
Analytic conductor: |
1.99626 |
Root analytic conductor: |
1.41289 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4000(2753,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 4000, ( :0), 0.963−0.266i)
|
Particular Values
L(21) |
≈ |
1.714943846 |
L(21) |
≈ |
1.714943846 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−0.684−0.728i)T |
good | 3 | 1+(−0.998+0.0627i)T2 |
| 7 | 1+(0.951−0.309i)T2 |
| 11 | 1+(−0.425+0.904i)T2 |
| 13 | 1+(−0.743+0.843i)T+(−0.125−0.992i)T2 |
| 17 | 1+(−1.41−0.508i)T+(0.770+0.637i)T2 |
| 19 | 1+(−0.0627+0.998i)T2 |
| 23 | 1+(0.481+0.876i)T2 |
| 29 | 1+(0.742+1.35i)T+(−0.535+0.844i)T2 |
| 31 | 1+(−0.637+0.770i)T2 |
| 37 | 1+(1.01+0.0958i)T+(0.982+0.187i)T2 |
| 41 | 1+(1.75+0.450i)T+(0.876+0.481i)T2 |
| 43 | 1+(−0.587−0.809i)T2 |
| 47 | 1+(0.248−0.968i)T2 |
| 53 | 1+(−0.313+0.461i)T+(−0.368−0.929i)T2 |
| 59 | 1+(−0.728+0.684i)T2 |
| 61 | 1+(−1.32+0.340i)T+(0.876−0.481i)T2 |
| 67 | 1+(0.844−0.535i)T2 |
| 71 | 1+(0.968+0.248i)T2 |
| 73 | 1+(−0.627−1.45i)T+(−0.684+0.728i)T2 |
| 79 | 1+(−0.0627−0.998i)T2 |
| 83 | 1+(0.998+0.0627i)T2 |
| 89 | 1+(−0.621+1.57i)T+(−0.728−0.684i)T2 |
| 97 | 1+(0.512−1.76i)T+(−0.844−0.535i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.553860130376247507126641745329, −7.889443828499257562153304375671, −7.15881450732609756463210165828, −6.45752506459838043753464141475, −5.72079247636749501219321714678, −5.11752931329105590825945227523, −3.79299318466904046147138019612, −3.38373275366176879959244188837, −2.17023577444957140787254925945, −1.27043454777770090795485033963,
1.28238903988601333664174999939, 1.82116895637473185427874998180, 3.24442687701479249421595802138, 4.03098322699275004701524266712, 5.02130723905017296570899778406, 5.42221403734480733192675525610, 6.49751364057975111085009532544, 7.01583031967968420876403850497, 7.935076902151283594340775454191, 8.674375553753824008011697437692