L(s) = 1 | + 2.14·2-s − 0.619·3-s + 2.60·4-s + 2.51·5-s − 1.33·6-s − 4.78·7-s + 1.29·8-s − 2.61·9-s + 5.39·10-s + 2.09·11-s − 1.61·12-s + 3.38·13-s − 10.2·14-s − 1.55·15-s − 2.42·16-s + 0.479·17-s − 5.61·18-s + 7.16·19-s + 6.55·20-s + 2.96·21-s + 4.49·22-s + 7.76·23-s − 0.805·24-s + 1.32·25-s + 7.26·26-s + 3.48·27-s − 12.4·28-s + ⋯ |
L(s) = 1 | + 1.51·2-s − 0.357·3-s + 1.30·4-s + 1.12·5-s − 0.543·6-s − 1.80·7-s + 0.459·8-s − 0.871·9-s + 1.70·10-s + 0.632·11-s − 0.466·12-s + 0.939·13-s − 2.74·14-s − 0.402·15-s − 0.605·16-s + 0.116·17-s − 1.32·18-s + 1.64·19-s + 1.46·20-s + 0.647·21-s + 0.959·22-s + 1.61·23-s − 0.164·24-s + 0.264·25-s + 1.42·26-s + 0.670·27-s − 2.35·28-s + ⋯ |
Λ(s)=(=(4001s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4001s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
4.108328412 |
L(21) |
≈ |
4.108328412 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 4001 | 1+O(T) |
good | 2 | 1−2.14T+2T2 |
| 3 | 1+0.619T+3T2 |
| 5 | 1−2.51T+5T2 |
| 7 | 1+4.78T+7T2 |
| 11 | 1−2.09T+11T2 |
| 13 | 1−3.38T+13T2 |
| 17 | 1−0.479T+17T2 |
| 19 | 1−7.16T+19T2 |
| 23 | 1−7.76T+23T2 |
| 29 | 1−5.00T+29T2 |
| 31 | 1−0.822T+31T2 |
| 37 | 1+2.72T+37T2 |
| 41 | 1+1.05T+41T2 |
| 43 | 1+5.14T+43T2 |
| 47 | 1−1.83T+47T2 |
| 53 | 1−9.33T+53T2 |
| 59 | 1+4.44T+59T2 |
| 61 | 1−4.37T+61T2 |
| 67 | 1+2.89T+67T2 |
| 71 | 1−5.72T+71T2 |
| 73 | 1+1.46T+73T2 |
| 79 | 1−9.67T+79T2 |
| 83 | 1−15.3T+83T2 |
| 89 | 1+5.31T+89T2 |
| 97 | 1−6.21T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.713766316116241859457247051956, −7.13668881518928320562030597864, −6.52355716913778429979835621600, −6.11631741490990152646406344529, −5.53006771941824696594887902001, −4.93622990869904441680384546285, −3.57982437195430743737072187702, −3.25378932497765497548871308760, −2.48919324605588768410135445003, −0.953677812210124417163641517817,
0.953677812210124417163641517817, 2.48919324605588768410135445003, 3.25378932497765497548871308760, 3.57982437195430743737072187702, 4.93622990869904441680384546285, 5.53006771941824696594887902001, 6.11631741490990152646406344529, 6.52355716913778429979835621600, 7.13668881518928320562030597864, 8.713766316116241859457247051956