Properties

Label 2-4001-1.1-c1-0-137
Degree $2$
Conductor $4001$
Sign $1$
Analytic cond. $31.9481$
Root an. cond. $5.65226$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.14·2-s − 0.619·3-s + 2.60·4-s + 2.51·5-s − 1.33·6-s − 4.78·7-s + 1.29·8-s − 2.61·9-s + 5.39·10-s + 2.09·11-s − 1.61·12-s + 3.38·13-s − 10.2·14-s − 1.55·15-s − 2.42·16-s + 0.479·17-s − 5.61·18-s + 7.16·19-s + 6.55·20-s + 2.96·21-s + 4.49·22-s + 7.76·23-s − 0.805·24-s + 1.32·25-s + 7.26·26-s + 3.48·27-s − 12.4·28-s + ⋯
L(s)  = 1  + 1.51·2-s − 0.357·3-s + 1.30·4-s + 1.12·5-s − 0.543·6-s − 1.80·7-s + 0.459·8-s − 0.871·9-s + 1.70·10-s + 0.632·11-s − 0.466·12-s + 0.939·13-s − 2.74·14-s − 0.402·15-s − 0.605·16-s + 0.116·17-s − 1.32·18-s + 1.64·19-s + 1.46·20-s + 0.647·21-s + 0.959·22-s + 1.61·23-s − 0.164·24-s + 0.264·25-s + 1.42·26-s + 0.670·27-s − 2.35·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4001 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4001 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4001\)
Sign: $1$
Analytic conductor: \(31.9481\)
Root analytic conductor: \(5.65226\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4001,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.108328412\)
\(L(\frac12)\) \(\approx\) \(4.108328412\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad4001 \( 1+O(T) \)
good2 \( 1 - 2.14T + 2T^{2} \)
3 \( 1 + 0.619T + 3T^{2} \)
5 \( 1 - 2.51T + 5T^{2} \)
7 \( 1 + 4.78T + 7T^{2} \)
11 \( 1 - 2.09T + 11T^{2} \)
13 \( 1 - 3.38T + 13T^{2} \)
17 \( 1 - 0.479T + 17T^{2} \)
19 \( 1 - 7.16T + 19T^{2} \)
23 \( 1 - 7.76T + 23T^{2} \)
29 \( 1 - 5.00T + 29T^{2} \)
31 \( 1 - 0.822T + 31T^{2} \)
37 \( 1 + 2.72T + 37T^{2} \)
41 \( 1 + 1.05T + 41T^{2} \)
43 \( 1 + 5.14T + 43T^{2} \)
47 \( 1 - 1.83T + 47T^{2} \)
53 \( 1 - 9.33T + 53T^{2} \)
59 \( 1 + 4.44T + 59T^{2} \)
61 \( 1 - 4.37T + 61T^{2} \)
67 \( 1 + 2.89T + 67T^{2} \)
71 \( 1 - 5.72T + 71T^{2} \)
73 \( 1 + 1.46T + 73T^{2} \)
79 \( 1 - 9.67T + 79T^{2} \)
83 \( 1 - 15.3T + 83T^{2} \)
89 \( 1 + 5.31T + 89T^{2} \)
97 \( 1 - 6.21T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.713766316116241859457247051956, −7.13668881518928320562030597864, −6.52355716913778429979835621600, −6.11631741490990152646406344529, −5.53006771941824696594887902001, −4.93622990869904441680384546285, −3.57982437195430743737072187702, −3.25378932497765497548871308760, −2.48919324605588768410135445003, −0.953677812210124417163641517817, 0.953677812210124417163641517817, 2.48919324605588768410135445003, 3.25378932497765497548871308760, 3.57982437195430743737072187702, 4.93622990869904441680384546285, 5.53006771941824696594887902001, 6.11631741490990152646406344529, 6.52355716913778429979835621600, 7.13668881518928320562030597864, 8.713766316116241859457247051956

Graph of the $Z$-function along the critical line