L(s) = 1 | − 2-s + 3-s + 4-s − 1.56·5-s − 6-s − 1.09·7-s − 8-s + 9-s + 1.56·10-s + 4.17·11-s + 12-s − 2.33·13-s + 1.09·14-s − 1.56·15-s + 16-s − 0.0496·17-s − 18-s + 2.48·19-s − 1.56·20-s − 1.09·21-s − 4.17·22-s + 23-s − 24-s − 2.56·25-s + 2.33·26-s + 27-s − 1.09·28-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s + 0.5·4-s − 0.698·5-s − 0.408·6-s − 0.412·7-s − 0.353·8-s + 0.333·9-s + 0.493·10-s + 1.25·11-s + 0.288·12-s − 0.648·13-s + 0.291·14-s − 0.403·15-s + 0.250·16-s − 0.0120·17-s − 0.235·18-s + 0.569·19-s − 0.349·20-s − 0.238·21-s − 0.890·22-s + 0.208·23-s − 0.204·24-s − 0.512·25-s + 0.458·26-s + 0.192·27-s − 0.206·28-s + ⋯ |
Λ(s)=(=(4002s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4002s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.383376459 |
L(21) |
≈ |
1.383376459 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1−T |
| 23 | 1−T |
| 29 | 1−T |
good | 5 | 1+1.56T+5T2 |
| 7 | 1+1.09T+7T2 |
| 11 | 1−4.17T+11T2 |
| 13 | 1+2.33T+13T2 |
| 17 | 1+0.0496T+17T2 |
| 19 | 1−2.48T+19T2 |
| 31 | 1+0.863T+31T2 |
| 37 | 1−9.50T+37T2 |
| 41 | 1+10.0T+41T2 |
| 43 | 1−1.25T+43T2 |
| 47 | 1−0.476T+47T2 |
| 53 | 1−12.0T+53T2 |
| 59 | 1−1.02T+59T2 |
| 61 | 1−12.5T+61T2 |
| 67 | 1+5.94T+67T2 |
| 71 | 1−4.49T+71T2 |
| 73 | 1+0.0841T+73T2 |
| 79 | 1+12.4T+79T2 |
| 83 | 1−2.88T+83T2 |
| 89 | 1−6.00T+89T2 |
| 97 | 1+1.94T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.483012883296788311330797106196, −7.79465497337517114363767956676, −7.11342669809506716150550606157, −6.59064063845597889790148194142, −5.59573972784434273316741651444, −4.44355445867998118212552951991, −3.70981552321667188876355036032, −2.95001307629233913367159236299, −1.89331894051472742213117147580, −0.73263615379500269157525798365,
0.73263615379500269157525798365, 1.89331894051472742213117147580, 2.95001307629233913367159236299, 3.70981552321667188876355036032, 4.44355445867998118212552951991, 5.59573972784434273316741651444, 6.59064063845597889790148194142, 7.11342669809506716150550606157, 7.79465497337517114363767956676, 8.483012883296788311330797106196