Properties

Label 2-4032-1.1-c1-0-30
Degree $2$
Conductor $4032$
Sign $1$
Analytic cond. $32.1956$
Root an. cond. $5.67412$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·5-s + 7-s − 2·11-s + 6·13-s + 4·17-s − 4·19-s + 2·23-s + 11·25-s − 2·29-s + 4·35-s − 2·37-s − 4·43-s + 12·47-s + 49-s − 6·53-s − 8·55-s + 8·59-s − 6·61-s + 24·65-s − 8·67-s + 14·71-s − 2·73-s − 2·77-s − 12·79-s + 4·83-s + 16·85-s + 6·91-s + ⋯
L(s)  = 1  + 1.78·5-s + 0.377·7-s − 0.603·11-s + 1.66·13-s + 0.970·17-s − 0.917·19-s + 0.417·23-s + 11/5·25-s − 0.371·29-s + 0.676·35-s − 0.328·37-s − 0.609·43-s + 1.75·47-s + 1/7·49-s − 0.824·53-s − 1.07·55-s + 1.04·59-s − 0.768·61-s + 2.97·65-s − 0.977·67-s + 1.66·71-s − 0.234·73-s − 0.227·77-s − 1.35·79-s + 0.439·83-s + 1.73·85-s + 0.628·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4032 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4032 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4032\)    =    \(2^{6} \cdot 3^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(32.1956\)
Root analytic conductor: \(5.67412\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4032,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.176047511\)
\(L(\frac12)\) \(\approx\) \(3.176047511\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
good5 \( 1 - 4 T + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 - 4 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 - 2 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 12 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 - 8 T + p T^{2} \)
61 \( 1 + 6 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 - 14 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 + 12 T + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.621234568783701478950617886590, −7.79195451575718587485184031739, −6.78902576466258518849814546939, −6.06564976659535992293108524760, −5.62370507273544228914734043068, −4.91059247592313575518339819369, −3.78443484852293199292674683103, −2.79378519992244683258213909080, −1.88896973398279373978653204444, −1.12644399783657185408249656998, 1.12644399783657185408249656998, 1.88896973398279373978653204444, 2.79378519992244683258213909080, 3.78443484852293199292674683103, 4.91059247592313575518339819369, 5.62370507273544228914734043068, 6.06564976659535992293108524760, 6.78902576466258518849814546939, 7.79195451575718587485184031739, 8.621234568783701478950617886590

Graph of the $Z$-function along the critical line