L(s) = 1 | − 7-s + 6·11-s − 2·13-s − 4·19-s − 6·23-s − 5·25-s + 6·29-s − 8·31-s − 2·37-s − 12·41-s − 4·43-s + 12·47-s + 49-s − 6·53-s + 10·61-s + 8·67-s + 6·71-s − 10·73-s − 6·77-s + 4·79-s + 12·83-s − 12·89-s + 2·91-s − 10·97-s − 12·101-s − 8·103-s + 6·107-s + ⋯ |
L(s) = 1 | − 0.377·7-s + 1.80·11-s − 0.554·13-s − 0.917·19-s − 1.25·23-s − 25-s + 1.11·29-s − 1.43·31-s − 0.328·37-s − 1.87·41-s − 0.609·43-s + 1.75·47-s + 1/7·49-s − 0.824·53-s + 1.28·61-s + 0.977·67-s + 0.712·71-s − 1.17·73-s − 0.683·77-s + 0.450·79-s + 1.31·83-s − 1.27·89-s + 0.209·91-s − 1.01·97-s − 1.19·101-s − 0.788·103-s + 0.580·107-s + ⋯ |
Λ(s)=(=(4032s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(4032s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+T |
good | 5 | 1+pT2 |
| 11 | 1−6T+pT2 |
| 13 | 1+2T+pT2 |
| 17 | 1+pT2 |
| 19 | 1+4T+pT2 |
| 23 | 1+6T+pT2 |
| 29 | 1−6T+pT2 |
| 31 | 1+8T+pT2 |
| 37 | 1+2T+pT2 |
| 41 | 1+12T+pT2 |
| 43 | 1+4T+pT2 |
| 47 | 1−12T+pT2 |
| 53 | 1+6T+pT2 |
| 59 | 1+pT2 |
| 61 | 1−10T+pT2 |
| 67 | 1−8T+pT2 |
| 71 | 1−6T+pT2 |
| 73 | 1+10T+pT2 |
| 79 | 1−4T+pT2 |
| 83 | 1−12T+pT2 |
| 89 | 1+12T+pT2 |
| 97 | 1+10T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.213446609484277420706681145366, −7.18052525439954131151018372494, −6.61214442273728283164556360378, −6.01676531608062216159532650200, −5.07643921282730531606229802841, −3.99784334743039531176458960720, −3.70585619782695729246427373887, −2.36003185284708036230417844213, −1.49990868331367069680950997074, 0,
1.49990868331367069680950997074, 2.36003185284708036230417844213, 3.70585619782695729246427373887, 3.99784334743039531176458960720, 5.07643921282730531606229802841, 6.01676531608062216159532650200, 6.61214442273728283164556360378, 7.18052525439954131151018372494, 8.213446609484277420706681145366