Properties

Label 2-405-135.103-c2-0-0
Degree $2$
Conductor $405$
Sign $-0.478 + 0.878i$
Analytic cond. $11.0354$
Root an. cond. $3.32196$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.117 + 1.34i)2-s + (2.15 + 0.379i)4-s + (0.0927 + 4.99i)5-s + (−9.67 − 6.77i)7-s + (−2.15 + 8.04i)8-s + (−6.71 − 0.462i)10-s + (−16.2 − 5.91i)11-s + (−0.390 − 4.46i)13-s + (10.2 − 12.1i)14-s + (−2.32 − 0.846i)16-s + (−6.71 − 25.0i)17-s + (−7.57 + 4.37i)19-s + (−1.69 + 10.7i)20-s + (9.84 − 21.1i)22-s + (6.55 − 4.58i)23-s + ⋯
L(s)  = 1  + (−0.0586 + 0.670i)2-s + (0.538 + 0.0949i)4-s + (0.0185 + 0.999i)5-s + (−1.38 − 0.967i)7-s + (−0.269 + 1.00i)8-s + (−0.671 − 0.0462i)10-s + (−1.47 − 0.537i)11-s + (−0.0300 − 0.343i)13-s + (0.729 − 0.869i)14-s + (−0.145 − 0.0529i)16-s + (−0.394 − 1.47i)17-s + (−0.398 + 0.230i)19-s + (−0.0849 + 0.539i)20-s + (0.447 − 0.959i)22-s + (0.284 − 0.199i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.478 + 0.878i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.478 + 0.878i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(405\)    =    \(3^{4} \cdot 5\)
Sign: $-0.478 + 0.878i$
Analytic conductor: \(11.0354\)
Root analytic conductor: \(3.32196\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{405} (118, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 405,\ (\ :1),\ -0.478 + 0.878i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.00960394 - 0.0161609i\)
\(L(\frac12)\) \(\approx\) \(0.00960394 - 0.0161609i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + (-0.0927 - 4.99i)T \)
good2 \( 1 + (0.117 - 1.34i)T + (-3.93 - 0.694i)T^{2} \)
7 \( 1 + (9.67 + 6.77i)T + (16.7 + 46.0i)T^{2} \)
11 \( 1 + (16.2 + 5.91i)T + (92.6 + 77.7i)T^{2} \)
13 \( 1 + (0.390 + 4.46i)T + (-166. + 29.3i)T^{2} \)
17 \( 1 + (6.71 + 25.0i)T + (-250. + 144.5i)T^{2} \)
19 \( 1 + (7.57 - 4.37i)T + (180.5 - 312. i)T^{2} \)
23 \( 1 + (-6.55 + 4.58i)T + (180. - 497. i)T^{2} \)
29 \( 1 + (-17.9 - 21.4i)T + (-146. + 828. i)T^{2} \)
31 \( 1 + (6.49 - 36.8i)T + (-903. - 328. i)T^{2} \)
37 \( 1 + (-5.93 - 22.1i)T + (-1.18e3 + 684.5i)T^{2} \)
41 \( 1 + (14.8 + 12.4i)T + (291. + 1.65e3i)T^{2} \)
43 \( 1 + (26.3 + 56.5i)T + (-1.18e3 + 1.41e3i)T^{2} \)
47 \( 1 + (-11.9 - 8.33i)T + (755. + 2.07e3i)T^{2} \)
53 \( 1 + (22.3 + 22.3i)T + 2.80e3iT^{2} \)
59 \( 1 + (4.40 + 12.1i)T + (-2.66e3 + 2.23e3i)T^{2} \)
61 \( 1 + (-1.10 - 6.25i)T + (-3.49e3 + 1.27e3i)T^{2} \)
67 \( 1 + (103. - 9.02i)T + (4.42e3 - 779. i)T^{2} \)
71 \( 1 + (13.1 - 22.7i)T + (-2.52e3 - 4.36e3i)T^{2} \)
73 \( 1 + (2.02 - 7.56i)T + (-4.61e3 - 2.66e3i)T^{2} \)
79 \( 1 + (18.1 + 21.6i)T + (-1.08e3 + 6.14e3i)T^{2} \)
83 \( 1 + (86.3 + 7.55i)T + (6.78e3 + 1.19e3i)T^{2} \)
89 \( 1 + (70.7 - 40.8i)T + (3.96e3 - 6.85e3i)T^{2} \)
97 \( 1 + (-109. + 51.2i)T + (6.04e3 - 7.20e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.43910528114168700030083397308, −10.48774347922970547092016006663, −10.21891939653521638049958488554, −8.729924756869614049390426160903, −7.53336941697393014987152041926, −7.01040877819889587255039042077, −6.30011530483623765232756765435, −5.16515098308587076282375942344, −3.28224552946480663636765064395, −2.71908716683770212675055325084, 0.00726148204729450890934297652, 1.95139556490679983199475573897, 2.90076748537825075470237453227, 4.30727470080543720215139978277, 5.72670964799084141130120612274, 6.39371069252187635007866280518, 7.75010837988337495557050118910, 8.831492431643068333135251000426, 9.703120888387851741852823993278, 10.30950898493520060725349671891

Graph of the $Z$-function along the critical line