Properties

Label 2-405-135.103-c2-0-22
Degree $2$
Conductor $405$
Sign $-0.0870 + 0.996i$
Analytic cond. $11.0354$
Root an. cond. $3.32196$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.0920 − 1.05i)2-s + (2.84 + 0.500i)4-s + (−4.89 + 1.01i)5-s + (−3.71 − 2.60i)7-s + (1.88 − 7.02i)8-s + (0.612 + 5.24i)10-s + (18.1 + 6.59i)11-s + (−0.720 − 8.23i)13-s + (−3.07 + 3.66i)14-s + (3.62 + 1.32i)16-s + (−8.00 − 29.8i)17-s + (−13.8 + 8.01i)19-s + (−14.4 + 0.417i)20-s + (8.60 − 18.4i)22-s + (23.1 − 16.2i)23-s + ⋯
L(s)  = 1  + (0.0460 − 0.525i)2-s + (0.710 + 0.125i)4-s + (−0.979 + 0.202i)5-s + (−0.530 − 0.371i)7-s + (0.235 − 0.877i)8-s + (0.0612 + 0.524i)10-s + (1.64 + 0.599i)11-s + (−0.0554 − 0.633i)13-s + (−0.219 + 0.262i)14-s + (0.226 + 0.0825i)16-s + (−0.470 − 1.75i)17-s + (−0.730 + 0.421i)19-s + (−0.720 + 0.0208i)20-s + (0.390 − 0.838i)22-s + (1.00 − 0.705i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0870 + 0.996i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.0870 + 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(405\)    =    \(3^{4} \cdot 5\)
Sign: $-0.0870 + 0.996i$
Analytic conductor: \(11.0354\)
Root analytic conductor: \(3.32196\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{405} (118, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 405,\ (\ :1),\ -0.0870 + 0.996i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.12149 - 1.22381i\)
\(L(\frac12)\) \(\approx\) \(1.12149 - 1.22381i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + (4.89 - 1.01i)T \)
good2 \( 1 + (-0.0920 + 1.05i)T + (-3.93 - 0.694i)T^{2} \)
7 \( 1 + (3.71 + 2.60i)T + (16.7 + 46.0i)T^{2} \)
11 \( 1 + (-18.1 - 6.59i)T + (92.6 + 77.7i)T^{2} \)
13 \( 1 + (0.720 + 8.23i)T + (-166. + 29.3i)T^{2} \)
17 \( 1 + (8.00 + 29.8i)T + (-250. + 144.5i)T^{2} \)
19 \( 1 + (13.8 - 8.01i)T + (180.5 - 312. i)T^{2} \)
23 \( 1 + (-23.1 + 16.2i)T + (180. - 497. i)T^{2} \)
29 \( 1 + (21.0 + 25.1i)T + (-146. + 828. i)T^{2} \)
31 \( 1 + (-4.78 + 27.1i)T + (-903. - 328. i)T^{2} \)
37 \( 1 + (-0.000754 - 0.00281i)T + (-1.18e3 + 684.5i)T^{2} \)
41 \( 1 + (-27.2 - 22.9i)T + (291. + 1.65e3i)T^{2} \)
43 \( 1 + (-10.6 - 22.8i)T + (-1.18e3 + 1.41e3i)T^{2} \)
47 \( 1 + (-26.1 - 18.3i)T + (755. + 2.07e3i)T^{2} \)
53 \( 1 + (24.1 + 24.1i)T + 2.80e3iT^{2} \)
59 \( 1 + (-7.25 - 19.9i)T + (-2.66e3 + 2.23e3i)T^{2} \)
61 \( 1 + (18.4 + 104. i)T + (-3.49e3 + 1.27e3i)T^{2} \)
67 \( 1 + (-3.68 + 0.322i)T + (4.42e3 - 779. i)T^{2} \)
71 \( 1 + (4.78 - 8.28i)T + (-2.52e3 - 4.36e3i)T^{2} \)
73 \( 1 + (21.4 - 80.0i)T + (-4.61e3 - 2.66e3i)T^{2} \)
79 \( 1 + (-54.4 - 64.9i)T + (-1.08e3 + 6.14e3i)T^{2} \)
83 \( 1 + (66.2 + 5.79i)T + (6.78e3 + 1.19e3i)T^{2} \)
89 \( 1 + (55.4 - 32.0i)T + (3.96e3 - 6.85e3i)T^{2} \)
97 \( 1 + (-19.1 + 8.92i)T + (6.04e3 - 7.20e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.15551367278010042930834642192, −9.982662534959007530064054695001, −9.198940740940002814506383640126, −7.81571419994635618254063051636, −6.99590796281884927860919378597, −6.39979669317123956709675837918, −4.48839342489948051669283966542, −3.64730302736481263801799371795, −2.54193229602094303722952814913, −0.74426684569413630394981406038, 1.55474663311610910547936213987, 3.31141191363523325526117244400, 4.32476832824267738446223843011, 5.83297717946794980418984232576, 6.62577798417846583991405731979, 7.31879162664807180038141756777, 8.690098057621832292868452976467, 8.985127709665103886778119534480, 10.70129546475669624499004153095, 11.25805691530758323806388239547

Graph of the $Z$-function along the critical line