L(s) = 1 | + 3-s + 5-s + 3·7-s + 9-s − 3·11-s − 4·13-s + 15-s − 17-s − 19-s + 3·21-s + 4·23-s + 25-s + 27-s − 3·29-s + 8·31-s − 3·33-s + 3·35-s + 3·37-s − 4·39-s + 5·41-s + 8·43-s + 45-s + 9·47-s + 2·49-s − 51-s − 7·53-s − 3·55-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 0.447·5-s + 1.13·7-s + 1/3·9-s − 0.904·11-s − 1.10·13-s + 0.258·15-s − 0.242·17-s − 0.229·19-s + 0.654·21-s + 0.834·23-s + 1/5·25-s + 0.192·27-s − 0.557·29-s + 1.43·31-s − 0.522·33-s + 0.507·35-s + 0.493·37-s − 0.640·39-s + 0.780·41-s + 1.21·43-s + 0.149·45-s + 1.31·47-s + 2/7·49-s − 0.140·51-s − 0.961·53-s − 0.404·55-s + ⋯ |
Λ(s)=(=(4080s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4080s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.821329680 |
L(21) |
≈ |
2.821329680 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−T |
| 5 | 1−T |
| 17 | 1+T |
good | 7 | 1−3T+pT2 |
| 11 | 1+3T+pT2 |
| 13 | 1+4T+pT2 |
| 19 | 1+T+pT2 |
| 23 | 1−4T+pT2 |
| 29 | 1+3T+pT2 |
| 31 | 1−8T+pT2 |
| 37 | 1−3T+pT2 |
| 41 | 1−5T+pT2 |
| 43 | 1−8T+pT2 |
| 47 | 1−9T+pT2 |
| 53 | 1+7T+pT2 |
| 59 | 1−6T+pT2 |
| 61 | 1−8T+pT2 |
| 67 | 1+2T+pT2 |
| 71 | 1−16T+pT2 |
| 73 | 1−9T+pT2 |
| 79 | 1−14T+pT2 |
| 83 | 1−8T+pT2 |
| 89 | 1−2T+pT2 |
| 97 | 1−14T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.260382618805256542430323786308, −7.83053371110021056834400314726, −7.17357628311824753957788925827, −6.24898778293344730746320092815, −5.17145210780284634244296896801, −4.85692765750778214058282261269, −3.88935816953954937855088642106, −2.53416210932782266200703139162, −2.31191132427133956795448473973, −0.952314738010447951173545884501,
0.952314738010447951173545884501, 2.31191132427133956795448473973, 2.53416210932782266200703139162, 3.88935816953954937855088642106, 4.85692765750778214058282261269, 5.17145210780284634244296896801, 6.24898778293344730746320092815, 7.17357628311824753957788925827, 7.83053371110021056834400314726, 8.260382618805256542430323786308