Properties

Label 2-4080-1.1-c1-0-25
Degree $2$
Conductor $4080$
Sign $1$
Analytic cond. $32.5789$
Root an. cond. $5.70779$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s + 3·7-s + 9-s − 3·11-s − 4·13-s + 15-s − 17-s − 19-s + 3·21-s + 4·23-s + 25-s + 27-s − 3·29-s + 8·31-s − 3·33-s + 3·35-s + 3·37-s − 4·39-s + 5·41-s + 8·43-s + 45-s + 9·47-s + 2·49-s − 51-s − 7·53-s − 3·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s + 1.13·7-s + 1/3·9-s − 0.904·11-s − 1.10·13-s + 0.258·15-s − 0.242·17-s − 0.229·19-s + 0.654·21-s + 0.834·23-s + 1/5·25-s + 0.192·27-s − 0.557·29-s + 1.43·31-s − 0.522·33-s + 0.507·35-s + 0.493·37-s − 0.640·39-s + 0.780·41-s + 1.21·43-s + 0.149·45-s + 1.31·47-s + 2/7·49-s − 0.140·51-s − 0.961·53-s − 0.404·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4080\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 17\)
Sign: $1$
Analytic conductor: \(32.5789\)
Root analytic conductor: \(5.70779\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4080,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.821329680\)
\(L(\frac12)\) \(\approx\) \(2.821329680\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 - T \)
17 \( 1 + T \)
good7 \( 1 - 3 T + p T^{2} \)
11 \( 1 + 3 T + p T^{2} \)
13 \( 1 + 4 T + p T^{2} \)
19 \( 1 + T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 + 3 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 - 3 T + p T^{2} \)
41 \( 1 - 5 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 - 9 T + p T^{2} \)
53 \( 1 + 7 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 - 8 T + p T^{2} \)
67 \( 1 + 2 T + p T^{2} \)
71 \( 1 - 16 T + p T^{2} \)
73 \( 1 - 9 T + p T^{2} \)
79 \( 1 - 14 T + p T^{2} \)
83 \( 1 - 8 T + p T^{2} \)
89 \( 1 - 2 T + p T^{2} \)
97 \( 1 - 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.260382618805256542430323786308, −7.83053371110021056834400314726, −7.17357628311824753957788925827, −6.24898778293344730746320092815, −5.17145210780284634244296896801, −4.85692765750778214058282261269, −3.88935816953954937855088642106, −2.53416210932782266200703139162, −2.31191132427133956795448473973, −0.952314738010447951173545884501, 0.952314738010447951173545884501, 2.31191132427133956795448473973, 2.53416210932782266200703139162, 3.88935816953954937855088642106, 4.85692765750778214058282261269, 5.17145210780284634244296896801, 6.24898778293344730746320092815, 7.17357628311824753957788925827, 7.83053371110021056834400314726, 8.260382618805256542430323786308

Graph of the $Z$-function along the critical line