Properties

Label 2-4080-1.1-c1-0-32
Degree $2$
Conductor $4080$
Sign $1$
Analytic cond. $32.5789$
Root an. cond. $5.70779$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s + 4·7-s + 9-s − 4·11-s + 2·13-s + 15-s + 17-s + 4·19-s + 4·21-s + 25-s + 27-s − 2·29-s − 4·33-s + 4·35-s − 2·37-s + 2·39-s + 6·41-s + 8·43-s + 45-s − 8·47-s + 9·49-s + 51-s + 6·53-s − 4·55-s + 4·57-s + 14·61-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s + 1.51·7-s + 1/3·9-s − 1.20·11-s + 0.554·13-s + 0.258·15-s + 0.242·17-s + 0.917·19-s + 0.872·21-s + 1/5·25-s + 0.192·27-s − 0.371·29-s − 0.696·33-s + 0.676·35-s − 0.328·37-s + 0.320·39-s + 0.937·41-s + 1.21·43-s + 0.149·45-s − 1.16·47-s + 9/7·49-s + 0.140·51-s + 0.824·53-s − 0.539·55-s + 0.529·57-s + 1.79·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4080\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 17\)
Sign: $1$
Analytic conductor: \(32.5789\)
Root analytic conductor: \(5.70779\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4080,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.238639287\)
\(L(\frac12)\) \(\approx\) \(3.238639287\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 - T \)
17 \( 1 - T \)
good7 \( 1 - 4 T + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 + 8 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 14 T + p T^{2} \)
67 \( 1 + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 - 2 T + p T^{2} \)
97 \( 1 - 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.470770728506762982214955189573, −7.61120582262229803259959075798, −7.40482834259110305072425292563, −6.07222000001737998766751687749, −5.34826462308760317540143328088, −4.79115526258017019169544729755, −3.82256359171002894408181453537, −2.79516385947658142038022464125, −2.01160533963847894191314784515, −1.07784062898596240556871145354, 1.07784062898596240556871145354, 2.01160533963847894191314784515, 2.79516385947658142038022464125, 3.82256359171002894408181453537, 4.79115526258017019169544729755, 5.34826462308760317540143328088, 6.07222000001737998766751687749, 7.40482834259110305072425292563, 7.61120582262229803259959075798, 8.470770728506762982214955189573

Graph of the $Z$-function along the critical line