L(s) = 1 | + 3-s + 5-s + 4·7-s + 9-s − 4·11-s + 2·13-s + 15-s + 17-s + 4·19-s + 4·21-s + 25-s + 27-s − 2·29-s − 4·33-s + 4·35-s − 2·37-s + 2·39-s + 6·41-s + 8·43-s + 45-s − 8·47-s + 9·49-s + 51-s + 6·53-s − 4·55-s + 4·57-s + 14·61-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 0.447·5-s + 1.51·7-s + 1/3·9-s − 1.20·11-s + 0.554·13-s + 0.258·15-s + 0.242·17-s + 0.917·19-s + 0.872·21-s + 1/5·25-s + 0.192·27-s − 0.371·29-s − 0.696·33-s + 0.676·35-s − 0.328·37-s + 0.320·39-s + 0.937·41-s + 1.21·43-s + 0.149·45-s − 1.16·47-s + 9/7·49-s + 0.140·51-s + 0.824·53-s − 0.539·55-s + 0.529·57-s + 1.79·61-s + ⋯ |
Λ(s)=(=(4080s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4080s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.238639287 |
L(21) |
≈ |
3.238639287 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−T |
| 5 | 1−T |
| 17 | 1−T |
good | 7 | 1−4T+pT2 |
| 11 | 1+4T+pT2 |
| 13 | 1−2T+pT2 |
| 19 | 1−4T+pT2 |
| 23 | 1+pT2 |
| 29 | 1+2T+pT2 |
| 31 | 1+pT2 |
| 37 | 1+2T+pT2 |
| 41 | 1−6T+pT2 |
| 43 | 1−8T+pT2 |
| 47 | 1+8T+pT2 |
| 53 | 1−6T+pT2 |
| 59 | 1+pT2 |
| 61 | 1−14T+pT2 |
| 67 | 1+pT2 |
| 71 | 1+12T+pT2 |
| 73 | 1+2T+pT2 |
| 79 | 1+8T+pT2 |
| 83 | 1+4T+pT2 |
| 89 | 1−2T+pT2 |
| 97 | 1−14T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.470770728506762982214955189573, −7.61120582262229803259959075798, −7.40482834259110305072425292563, −6.07222000001737998766751687749, −5.34826462308760317540143328088, −4.79115526258017019169544729755, −3.82256359171002894408181453537, −2.79516385947658142038022464125, −2.01160533963847894191314784515, −1.07784062898596240556871145354,
1.07784062898596240556871145354, 2.01160533963847894191314784515, 2.79516385947658142038022464125, 3.82256359171002894408181453537, 4.79115526258017019169544729755, 5.34826462308760317540143328088, 6.07222000001737998766751687749, 7.40482834259110305072425292563, 7.61120582262229803259959075798, 8.470770728506762982214955189573