L(s) = 1 | − 3-s − 5-s + 9-s + 2·11-s + 2·13-s + 15-s + 17-s − 8·19-s − 4·23-s + 25-s − 27-s + 2·29-s − 2·31-s − 2·33-s + 6·37-s − 2·39-s + 2·41-s + 2·43-s − 45-s − 6·47-s − 7·49-s − 51-s − 6·53-s − 2·55-s + 8·57-s + 8·59-s + 10·61-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 0.447·5-s + 1/3·9-s + 0.603·11-s + 0.554·13-s + 0.258·15-s + 0.242·17-s − 1.83·19-s − 0.834·23-s + 1/5·25-s − 0.192·27-s + 0.371·29-s − 0.359·31-s − 0.348·33-s + 0.986·37-s − 0.320·39-s + 0.312·41-s + 0.304·43-s − 0.149·45-s − 0.875·47-s − 49-s − 0.140·51-s − 0.824·53-s − 0.269·55-s + 1.05·57-s + 1.04·59-s + 1.28·61-s + ⋯ |
Λ(s)=(=(4080s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(4080s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+T |
| 5 | 1+T |
| 17 | 1−T |
good | 7 | 1+pT2 |
| 11 | 1−2T+pT2 |
| 13 | 1−2T+pT2 |
| 19 | 1+8T+pT2 |
| 23 | 1+4T+pT2 |
| 29 | 1−2T+pT2 |
| 31 | 1+2T+pT2 |
| 37 | 1−6T+pT2 |
| 41 | 1−2T+pT2 |
| 43 | 1−2T+pT2 |
| 47 | 1+6T+pT2 |
| 53 | 1+6T+pT2 |
| 59 | 1−8T+pT2 |
| 61 | 1−10T+pT2 |
| 67 | 1−2T+pT2 |
| 71 | 1+2T+pT2 |
| 73 | 1+2T+pT2 |
| 79 | 1+10T+pT2 |
| 83 | 1−2T+pT2 |
| 89 | 1+2T+pT2 |
| 97 | 1−2T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.163998021689167068974326747871, −7.27646840110275465931346359787, −6.38453862032052177963248868561, −6.11004251256253899935993553219, −5.00411018051121736292491828777, −4.20606174033542139955313212186, −3.66694881995610825962971601700, −2.38782684475517298797177638809, −1.29584629424822903147689903793, 0,
1.29584629424822903147689903793, 2.38782684475517298797177638809, 3.66694881995610825962971601700, 4.20606174033542139955313212186, 5.00411018051121736292491828777, 6.11004251256253899935993553219, 6.38453862032052177963248868561, 7.27646840110275465931346359787, 8.163998021689167068974326747871