L(s) = 1 | + 3-s − 5-s − 2·7-s + 9-s + 4·13-s − 15-s − 17-s − 4·19-s − 2·21-s − 4·23-s + 25-s + 27-s + 2·29-s + 2·35-s − 2·37-s + 4·39-s − 4·41-s − 10·43-s − 45-s + 8·47-s − 3·49-s − 51-s + 2·53-s − 4·57-s + 2·59-s − 14·61-s − 2·63-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 0.447·5-s − 0.755·7-s + 1/3·9-s + 1.10·13-s − 0.258·15-s − 0.242·17-s − 0.917·19-s − 0.436·21-s − 0.834·23-s + 1/5·25-s + 0.192·27-s + 0.371·29-s + 0.338·35-s − 0.328·37-s + 0.640·39-s − 0.624·41-s − 1.52·43-s − 0.149·45-s + 1.16·47-s − 3/7·49-s − 0.140·51-s + 0.274·53-s − 0.529·57-s + 0.260·59-s − 1.79·61-s − 0.251·63-s + ⋯ |
Λ(s)=(=(4080s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(4080s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−T |
| 5 | 1+T |
| 17 | 1+T |
good | 7 | 1+2T+pT2 |
| 11 | 1+pT2 |
| 13 | 1−4T+pT2 |
| 19 | 1+4T+pT2 |
| 23 | 1+4T+pT2 |
| 29 | 1−2T+pT2 |
| 31 | 1+pT2 |
| 37 | 1+2T+pT2 |
| 41 | 1+4T+pT2 |
| 43 | 1+10T+pT2 |
| 47 | 1−8T+pT2 |
| 53 | 1−2T+pT2 |
| 59 | 1−2T+pT2 |
| 61 | 1+14T+pT2 |
| 67 | 1+2T+pT2 |
| 71 | 1−6T+pT2 |
| 73 | 1+4T+pT2 |
| 79 | 1−12T+pT2 |
| 83 | 1+8T+pT2 |
| 89 | 1+10T+pT2 |
| 97 | 1−8T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.257092370884583806553558157953, −7.38243293285553331487569791034, −6.54074197989563386558294722278, −6.10451359096155657339774956293, −4.94312421770451194001712015410, −3.99936858650052089229006018924, −3.50941212032853063313081131447, −2.58034758427836734985063034447, −1.48936096510746096838730928196, 0,
1.48936096510746096838730928196, 2.58034758427836734985063034447, 3.50941212032853063313081131447, 3.99936858650052089229006018924, 4.94312421770451194001712015410, 6.10451359096155657339774956293, 6.54074197989563386558294722278, 7.38243293285553331487569791034, 8.257092370884583806553558157953