L(s) = 1 | − 2.82·3-s − 2.82·7-s + 5.00·9-s − 5.65·11-s − 2·13-s − 2·17-s + 8.00·21-s + 2.82·23-s − 5.65·27-s − 6·29-s − 5.65·31-s + 16.0·33-s − 10·37-s + 5.65·39-s + 2·41-s + 8.48·43-s − 2.82·47-s + 1.00·49-s + 5.65·51-s + 6·53-s + 11.3·59-s + 2·61-s − 14.1·63-s + 2.82·67-s − 8.00·69-s − 5.65·71-s + 6·73-s + ⋯ |
L(s) = 1 | − 1.63·3-s − 1.06·7-s + 1.66·9-s − 1.70·11-s − 0.554·13-s − 0.485·17-s + 1.74·21-s + 0.589·23-s − 1.08·27-s − 1.11·29-s − 1.01·31-s + 2.78·33-s − 1.64·37-s + 0.905·39-s + 0.312·41-s + 1.29·43-s − 0.412·47-s + 0.142·49-s + 0.792·51-s + 0.824·53-s + 1.47·59-s + 0.256·61-s − 1.78·63-s + 0.345·67-s − 0.963·69-s − 0.671·71-s + 0.702·73-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.3211668930\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3211668930\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + 2.82T + 3T^{2} \) |
| 7 | \( 1 + 2.82T + 7T^{2} \) |
| 11 | \( 1 + 5.65T + 11T^{2} \) |
| 13 | \( 1 + 2T + 13T^{2} \) |
| 17 | \( 1 + 2T + 17T^{2} \) |
| 19 | \( 1 + 19T^{2} \) |
| 23 | \( 1 - 2.82T + 23T^{2} \) |
| 29 | \( 1 + 6T + 29T^{2} \) |
| 31 | \( 1 + 5.65T + 31T^{2} \) |
| 37 | \( 1 + 10T + 37T^{2} \) |
| 41 | \( 1 - 2T + 41T^{2} \) |
| 43 | \( 1 - 8.48T + 43T^{2} \) |
| 47 | \( 1 + 2.82T + 47T^{2} \) |
| 53 | \( 1 - 6T + 53T^{2} \) |
| 59 | \( 1 - 11.3T + 59T^{2} \) |
| 61 | \( 1 - 2T + 61T^{2} \) |
| 67 | \( 1 - 2.82T + 67T^{2} \) |
| 71 | \( 1 + 5.65T + 71T^{2} \) |
| 73 | \( 1 - 6T + 73T^{2} \) |
| 79 | \( 1 + 11.3T + 79T^{2} \) |
| 83 | \( 1 + 2.82T + 83T^{2} \) |
| 89 | \( 1 - 10T + 89T^{2} \) |
| 97 | \( 1 + 2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.703275820484704096939853742859, −8.708559081948524404822471887853, −7.37401096126552261772733669767, −7.03318599604345545892302064245, −5.95739101623444747499372868575, −5.43463877895105829439051057151, −4.73024301599727083002851187900, −3.48643355186219516463291962461, −2.24984460088202391526922434250, −0.40311229020551760365318498096,
0.40311229020551760365318498096, 2.24984460088202391526922434250, 3.48643355186219516463291962461, 4.73024301599727083002851187900, 5.43463877895105829439051057151, 5.95739101623444747499372868575, 7.03318599604345545892302064245, 7.37401096126552261772733669767, 8.708559081948524404822471887853, 9.703275820484704096939853742859