L(s) = 1 | + (−0.309 − 0.951i)5-s + (−0.809 − 0.587i)9-s + (0.5 + 0.363i)13-s + (−0.5 − 1.53i)17-s + (−0.809 + 0.587i)25-s + (0.5 − 1.53i)29-s + (−1.30 − 0.951i)37-s + (−0.5 − 0.363i)41-s + (−0.309 + 0.951i)45-s + 49-s + (−0.190 + 0.587i)53-s + (0.5 − 0.363i)61-s + (0.190 − 0.587i)65-s + (−0.5 + 0.363i)73-s + (0.309 + 0.951i)81-s + ⋯ |
L(s) = 1 | + (−0.309 − 0.951i)5-s + (−0.809 − 0.587i)9-s + (0.5 + 0.363i)13-s + (−0.5 − 1.53i)17-s + (−0.809 + 0.587i)25-s + (0.5 − 1.53i)29-s + (−1.30 − 0.951i)37-s + (−0.5 − 0.363i)41-s + (−0.309 + 0.951i)45-s + 49-s + (−0.190 + 0.587i)53-s + (0.5 − 0.363i)61-s + (0.190 − 0.587i)65-s + (−0.5 + 0.363i)73-s + (0.309 + 0.951i)81-s + ⋯ |
Λ(s)=(=(1600s/2ΓC(s)L(s)(−0.187+0.982i)Λ(1−s)
Λ(s)=(=(1600s/2ΓC(s)L(s)(−0.187+0.982i)Λ(1−s)
Degree: |
2 |
Conductor: |
1600
= 26⋅52
|
Sign: |
−0.187+0.982i
|
Analytic conductor: |
0.798504 |
Root analytic conductor: |
0.893590 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1600(511,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1600, ( :0), −0.187+0.982i)
|
Particular Values
L(21) |
≈ |
0.8391105226 |
L(21) |
≈ |
0.8391105226 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(0.309+0.951i)T |
good | 3 | 1+(0.809+0.587i)T2 |
| 7 | 1−T2 |
| 11 | 1+(−0.309+0.951i)T2 |
| 13 | 1+(−0.5−0.363i)T+(0.309+0.951i)T2 |
| 17 | 1+(0.5+1.53i)T+(−0.809+0.587i)T2 |
| 19 | 1+(0.809−0.587i)T2 |
| 23 | 1+(−0.309+0.951i)T2 |
| 29 | 1+(−0.5+1.53i)T+(−0.809−0.587i)T2 |
| 31 | 1+(0.809−0.587i)T2 |
| 37 | 1+(1.30+0.951i)T+(0.309+0.951i)T2 |
| 41 | 1+(0.5+0.363i)T+(0.309+0.951i)T2 |
| 43 | 1−T2 |
| 47 | 1+(0.809+0.587i)T2 |
| 53 | 1+(0.190−0.587i)T+(−0.809−0.587i)T2 |
| 59 | 1+(−0.309−0.951i)T2 |
| 61 | 1+(−0.5+0.363i)T+(0.309−0.951i)T2 |
| 67 | 1+(0.809−0.587i)T2 |
| 71 | 1+(0.809+0.587i)T2 |
| 73 | 1+(0.5−0.363i)T+(0.309−0.951i)T2 |
| 79 | 1+(0.809+0.587i)T2 |
| 83 | 1+(0.809−0.587i)T2 |
| 89 | 1+(−1.30+0.951i)T+(0.309−0.951i)T2 |
| 97 | 1+(0.5−1.53i)T+(−0.809−0.587i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.060530546209481063756938441076, −8.849292540963149531341311797377, −7.88585154815558867769082933207, −7.00371766543096091699328867620, −6.04995159932846715639649453724, −5.24443509450568258219331981418, −4.37528734040920828418377688983, −3.46109081550391221025307731017, −2.24673950601836737448916783596, −0.65014870029216572411316128899,
1.83983109858557752187143826474, 3.01162637887682082632787829172, 3.71058196575893925915097754418, 4.90580606702507158354179508218, 5.88923826015952475583707126015, 6.57696057727015355967606272153, 7.42126686632240611254181321579, 8.417282979627949200631293199865, 8.674595640950674101332078338257, 10.12576251603664497746291482382