L(s) = 1 | + (−0.309 − 0.951i)5-s + (−0.809 − 0.587i)9-s + (0.5 + 0.363i)13-s + (−0.5 − 1.53i)17-s + (−0.809 + 0.587i)25-s + (0.5 − 1.53i)29-s + (−1.30 − 0.951i)37-s + (−0.5 − 0.363i)41-s + (−0.309 + 0.951i)45-s + 49-s + (−0.190 + 0.587i)53-s + (0.5 − 0.363i)61-s + (0.190 − 0.587i)65-s + (−0.5 + 0.363i)73-s + (0.309 + 0.951i)81-s + ⋯ |
L(s) = 1 | + (−0.309 − 0.951i)5-s + (−0.809 − 0.587i)9-s + (0.5 + 0.363i)13-s + (−0.5 − 1.53i)17-s + (−0.809 + 0.587i)25-s + (0.5 − 1.53i)29-s + (−1.30 − 0.951i)37-s + (−0.5 − 0.363i)41-s + (−0.309 + 0.951i)45-s + 49-s + (−0.190 + 0.587i)53-s + (0.5 − 0.363i)61-s + (0.190 − 0.587i)65-s + (−0.5 + 0.363i)73-s + (0.309 + 0.951i)81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.187 + 0.982i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.187 + 0.982i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8391105226\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8391105226\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.309 + 0.951i)T \) |
good | 3 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 7 | \( 1 - T^{2} \) |
| 11 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 13 | \( 1 + (-0.5 - 0.363i)T + (0.309 + 0.951i)T^{2} \) |
| 17 | \( 1 + (0.5 + 1.53i)T + (-0.809 + 0.587i)T^{2} \) |
| 19 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 23 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 29 | \( 1 + (-0.5 + 1.53i)T + (-0.809 - 0.587i)T^{2} \) |
| 31 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 37 | \( 1 + (1.30 + 0.951i)T + (0.309 + 0.951i)T^{2} \) |
| 41 | \( 1 + (0.5 + 0.363i)T + (0.309 + 0.951i)T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 53 | \( 1 + (0.190 - 0.587i)T + (-0.809 - 0.587i)T^{2} \) |
| 59 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 61 | \( 1 + (-0.5 + 0.363i)T + (0.309 - 0.951i)T^{2} \) |
| 67 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 71 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 73 | \( 1 + (0.5 - 0.363i)T + (0.309 - 0.951i)T^{2} \) |
| 79 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 83 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 89 | \( 1 + (-1.30 + 0.951i)T + (0.309 - 0.951i)T^{2} \) |
| 97 | \( 1 + (0.5 - 1.53i)T + (-0.809 - 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.060530546209481063756938441076, −8.849292540963149531341311797377, −7.88585154815558867769082933207, −7.00371766543096091699328867620, −6.04995159932846715639649453724, −5.24443509450568258219331981418, −4.37528734040920828418377688983, −3.46109081550391221025307731017, −2.24673950601836737448916783596, −0.65014870029216572411316128899,
1.83983109858557752187143826474, 3.01162637887682082632787829172, 3.71058196575893925915097754418, 4.90580606702507158354179508218, 5.88923826015952475583707126015, 6.57696057727015355967606272153, 7.42126686632240611254181321579, 8.417282979627949200631293199865, 8.674595640950674101332078338257, 10.12576251603664497746291482382