Properties

Label 2-40e2-16.5-c1-0-23
Degree $2$
Conductor $1600$
Sign $0.453 + 0.891i$
Analytic cond. $12.7760$
Root an. cond. $3.57436$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.99 + 1.99i)3-s − 1.09i·7-s − 4.93i·9-s + (2.33 + 2.33i)11-s + (−1.80 + 1.80i)13-s − 4.93·17-s + (2.03 − 2.03i)19-s + (2.17 + 2.17i)21-s − 1.45i·23-s + (3.84 + 3.84i)27-s + (0.707 − 0.707i)29-s − 10.1·31-s − 9.28·33-s + (−4.35 − 4.35i)37-s − 7.20i·39-s + ⋯
L(s)  = 1  + (−1.14 + 1.14i)3-s − 0.412i·7-s − 1.64i·9-s + (0.703 + 0.703i)11-s + (−0.501 + 0.501i)13-s − 1.19·17-s + (0.467 − 0.467i)19-s + (0.473 + 0.473i)21-s − 0.303i·23-s + (0.740 + 0.740i)27-s + (0.131 − 0.131i)29-s − 1.81·31-s − 1.61·33-s + (−0.715 − 0.715i)37-s − 1.15i·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.453 + 0.891i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.453 + 0.891i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1600\)    =    \(2^{6} \cdot 5^{2}\)
Sign: $0.453 + 0.891i$
Analytic conductor: \(12.7760\)
Root analytic conductor: \(3.57436\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1600} (1201, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1600,\ (\ :1/2),\ 0.453 + 0.891i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4669488679\)
\(L(\frac12)\) \(\approx\) \(0.4669488679\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + (1.99 - 1.99i)T - 3iT^{2} \)
7 \( 1 + 1.09iT - 7T^{2} \)
11 \( 1 + (-2.33 - 2.33i)T + 11iT^{2} \)
13 \( 1 + (1.80 - 1.80i)T - 13iT^{2} \)
17 \( 1 + 4.93T + 17T^{2} \)
19 \( 1 + (-2.03 + 2.03i)T - 19iT^{2} \)
23 \( 1 + 1.45iT - 23T^{2} \)
29 \( 1 + (-0.707 + 0.707i)T - 29iT^{2} \)
31 \( 1 + 10.1T + 31T^{2} \)
37 \( 1 + (4.35 + 4.35i)T + 37iT^{2} \)
41 \( 1 + 10.2iT - 41T^{2} \)
43 \( 1 + (-2.22 - 2.22i)T + 43iT^{2} \)
47 \( 1 + 2.09T + 47T^{2} \)
53 \( 1 + (-0.215 - 0.215i)T + 53iT^{2} \)
59 \( 1 + (1.16 + 1.16i)T + 59iT^{2} \)
61 \( 1 + (3.46 - 3.46i)T - 61iT^{2} \)
67 \( 1 + (-5.04 + 5.04i)T - 67iT^{2} \)
71 \( 1 + 6.40iT - 71T^{2} \)
73 \( 1 - 5.24iT - 73T^{2} \)
79 \( 1 - 2.61T + 79T^{2} \)
83 \( 1 + (-5.67 + 5.67i)T - 83iT^{2} \)
89 \( 1 + 6.87iT - 89T^{2} \)
97 \( 1 - 3.77T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.285471527543659532716746492599, −8.961958665466370610776490098750, −7.34167734404972936684276479672, −6.83845443718898371491951429352, −5.87378207548115033497716419573, −4.99416473802035998163159548956, −4.35024892634040299698053282024, −3.68187021489925213461058129501, −2.02403006827326467510003018192, −0.23514989886664444665732613059, 1.12730592642447118092165094479, 2.20284899219634700520171004193, 3.53690632451609662125736864073, 4.90284548144179871980125288864, 5.64010161364021822435073745251, 6.31326331439637901503343100563, 7.00372134994133021365585656892, 7.75985640700335261478506007519, 8.665656914424141832089762723680, 9.490305423153045784012081280378

Graph of the $Z$-function along the critical line