L(s) = 1 | + (−1.99 + 1.99i)3-s − 1.09i·7-s − 4.93i·9-s + (2.33 + 2.33i)11-s + (−1.80 + 1.80i)13-s − 4.93·17-s + (2.03 − 2.03i)19-s + (2.17 + 2.17i)21-s − 1.45i·23-s + (3.84 + 3.84i)27-s + (0.707 − 0.707i)29-s − 10.1·31-s − 9.28·33-s + (−4.35 − 4.35i)37-s − 7.20i·39-s + ⋯ |
L(s) = 1 | + (−1.14 + 1.14i)3-s − 0.412i·7-s − 1.64i·9-s + (0.703 + 0.703i)11-s + (−0.501 + 0.501i)13-s − 1.19·17-s + (0.467 − 0.467i)19-s + (0.473 + 0.473i)21-s − 0.303i·23-s + (0.740 + 0.740i)27-s + (0.131 − 0.131i)29-s − 1.81·31-s − 1.61·33-s + (−0.715 − 0.715i)37-s − 1.15i·39-s + ⋯ |
Λ(s)=(=(1600s/2ΓC(s)L(s)(0.453+0.891i)Λ(2−s)
Λ(s)=(=(1600s/2ΓC(s+1/2)L(s)(0.453+0.891i)Λ(1−s)
Degree: |
2 |
Conductor: |
1600
= 26⋅52
|
Sign: |
0.453+0.891i
|
Analytic conductor: |
12.7760 |
Root analytic conductor: |
3.57436 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1600(1201,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1600, ( :1/2), 0.453+0.891i)
|
Particular Values
L(1) |
≈ |
0.4669488679 |
L(21) |
≈ |
0.4669488679 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+(1.99−1.99i)T−3iT2 |
| 7 | 1+1.09iT−7T2 |
| 11 | 1+(−2.33−2.33i)T+11iT2 |
| 13 | 1+(1.80−1.80i)T−13iT2 |
| 17 | 1+4.93T+17T2 |
| 19 | 1+(−2.03+2.03i)T−19iT2 |
| 23 | 1+1.45iT−23T2 |
| 29 | 1+(−0.707+0.707i)T−29iT2 |
| 31 | 1+10.1T+31T2 |
| 37 | 1+(4.35+4.35i)T+37iT2 |
| 41 | 1+10.2iT−41T2 |
| 43 | 1+(−2.22−2.22i)T+43iT2 |
| 47 | 1+2.09T+47T2 |
| 53 | 1+(−0.215−0.215i)T+53iT2 |
| 59 | 1+(1.16+1.16i)T+59iT2 |
| 61 | 1+(3.46−3.46i)T−61iT2 |
| 67 | 1+(−5.04+5.04i)T−67iT2 |
| 71 | 1+6.40iT−71T2 |
| 73 | 1−5.24iT−73T2 |
| 79 | 1−2.61T+79T2 |
| 83 | 1+(−5.67+5.67i)T−83iT2 |
| 89 | 1+6.87iT−89T2 |
| 97 | 1−3.77T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.285471527543659532716746492599, −8.961958665466370610776490098750, −7.34167734404972936684276479672, −6.83845443718898371491951429352, −5.87378207548115033497716419573, −4.99416473802035998163159548956, −4.35024892634040299698053282024, −3.68187021489925213461058129501, −2.02403006827326467510003018192, −0.23514989886664444665732613059,
1.12730592642447118092165094479, 2.20284899219634700520171004193, 3.53690632451609662125736864073, 4.90284548144179871980125288864, 5.64010161364021822435073745251, 6.31326331439637901503343100563, 7.00372134994133021365585656892, 7.75985640700335261478506007519, 8.665656914424141832089762723680, 9.490305423153045784012081280378