L(s) = 1 | + (−1.22 + 1.22i)3-s − 1.99i·9-s − i·11-s + (1.22 − 1.22i)17-s + 19-s + (1.22 + 1.22i)27-s + (1.22 + 1.22i)33-s − 41-s + i·49-s + 2.99i·51-s + (−1.22 + 1.22i)57-s + 2·59-s + (−1.22 − 1.22i)67-s + (1.22 + 1.22i)73-s − 0.999·81-s + ⋯ |
L(s) = 1 | + (−1.22 + 1.22i)3-s − 1.99i·9-s − i·11-s + (1.22 − 1.22i)17-s + 19-s + (1.22 + 1.22i)27-s + (1.22 + 1.22i)33-s − 41-s + i·49-s + 2.99i·51-s + (−1.22 + 1.22i)57-s + 2·59-s + (−1.22 − 1.22i)67-s + (1.22 + 1.22i)73-s − 0.999·81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.945 - 0.326i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.945 - 0.326i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7419861790\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7419861790\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (1.22 - 1.22i)T - iT^{2} \) |
| 7 | \( 1 - iT^{2} \) |
| 11 | \( 1 + iT - T^{2} \) |
| 13 | \( 1 - iT^{2} \) |
| 17 | \( 1 + (-1.22 + 1.22i)T - iT^{2} \) |
| 19 | \( 1 - T + T^{2} \) |
| 23 | \( 1 + iT^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + iT^{2} \) |
| 41 | \( 1 + T + T^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 - iT^{2} \) |
| 59 | \( 1 - 2T + T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + (1.22 + 1.22i)T + iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (-1.22 - 1.22i)T + iT^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + (-1.22 + 1.22i)T - iT^{2} \) |
| 89 | \( 1 - iT - T^{2} \) |
| 97 | \( 1 - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.714720786236130314317281861911, −9.211079371241800975188443617768, −8.108862813009212543179465396233, −7.09959911852944383639502627036, −6.11209615441944494090003650544, −5.40027115487692109183849460081, −4.92850778866561085010260028843, −3.76692036608279088586439958730, −3.04929714164307614392700433941, −0.854792395949630825824052265300,
1.17002212834116417923128429689, 2.09494165064015195096684179690, 3.61498629578203627218172465436, 4.93844714229888410008396902722, 5.56915779428869497575206393200, 6.35404777405152463038642474250, 7.14669936269317272762810026517, 7.67641948739512780711892624946, 8.518131259915099924681028763603, 9.852846750045062303110477711126