L(s) = 1 | + (−1.22 + 1.22i)3-s − 1.99i·9-s − i·11-s + (1.22 − 1.22i)17-s + 19-s + (1.22 + 1.22i)27-s + (1.22 + 1.22i)33-s − 41-s + i·49-s + 2.99i·51-s + (−1.22 + 1.22i)57-s + 2·59-s + (−1.22 − 1.22i)67-s + (1.22 + 1.22i)73-s − 0.999·81-s + ⋯ |
L(s) = 1 | + (−1.22 + 1.22i)3-s − 1.99i·9-s − i·11-s + (1.22 − 1.22i)17-s + 19-s + (1.22 + 1.22i)27-s + (1.22 + 1.22i)33-s − 41-s + i·49-s + 2.99i·51-s + (−1.22 + 1.22i)57-s + 2·59-s + (−1.22 − 1.22i)67-s + (1.22 + 1.22i)73-s − 0.999·81-s + ⋯ |
Λ(s)=(=(1600s/2ΓC(s)L(s)(0.945−0.326i)Λ(1−s)
Λ(s)=(=(1600s/2ΓC(s)L(s)(0.945−0.326i)Λ(1−s)
Degree: |
2 |
Conductor: |
1600
= 26⋅52
|
Sign: |
0.945−0.326i
|
Analytic conductor: |
0.798504 |
Root analytic conductor: |
0.893590 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1600(993,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1600, ( :0), 0.945−0.326i)
|
Particular Values
L(21) |
≈ |
0.7419861790 |
L(21) |
≈ |
0.7419861790 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+(1.22−1.22i)T−iT2 |
| 7 | 1−iT2 |
| 11 | 1+iT−T2 |
| 13 | 1−iT2 |
| 17 | 1+(−1.22+1.22i)T−iT2 |
| 19 | 1−T+T2 |
| 23 | 1+iT2 |
| 29 | 1+T2 |
| 31 | 1+T2 |
| 37 | 1+iT2 |
| 41 | 1+T+T2 |
| 43 | 1−iT2 |
| 47 | 1−iT2 |
| 53 | 1−iT2 |
| 59 | 1−2T+T2 |
| 61 | 1−T2 |
| 67 | 1+(1.22+1.22i)T+iT2 |
| 71 | 1+T2 |
| 73 | 1+(−1.22−1.22i)T+iT2 |
| 79 | 1−T2 |
| 83 | 1+(−1.22+1.22i)T−iT2 |
| 89 | 1−iT−T2 |
| 97 | 1−iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.714720786236130314317281861911, −9.211079371241800975188443617768, −8.108862813009212543179465396233, −7.09959911852944383639502627036, −6.11209615441944494090003650544, −5.40027115487692109183849460081, −4.92850778866561085010260028843, −3.76692036608279088586439958730, −3.04929714164307614392700433941, −0.854792395949630825824052265300,
1.17002212834116417923128429689, 2.09494165064015195096684179690, 3.61498629578203627218172465436, 4.93844714229888410008396902722, 5.56915779428869497575206393200, 6.35404777405152463038642474250, 7.14669936269317272762810026517, 7.67641948739512780711892624946, 8.518131259915099924681028763603, 9.852846750045062303110477711126