L(s) = 1 | + (1 + i)3-s + (1 − i)7-s + i·9-s + 2·21-s + (−1 − i)23-s + 2i·29-s + (−1 − i)43-s + (−1 + i)47-s − i·49-s + (1 + i)63-s + (−1 + i)67-s − 2i·69-s + 81-s + (−1 − i)83-s + (−2 + 2i)87-s + ⋯ |
L(s) = 1 | + (1 + i)3-s + (1 − i)7-s + i·9-s + 2·21-s + (−1 − i)23-s + 2i·29-s + (−1 − i)43-s + (−1 + i)47-s − i·49-s + (1 + i)63-s + (−1 + i)67-s − 2i·69-s + 81-s + (−1 − i)83-s + (−2 + 2i)87-s + ⋯ |
Λ(s)=(=(1600s/2ΓC(s)L(s)(0.850−0.525i)Λ(1−s)
Λ(s)=(=(1600s/2ΓC(s)L(s)(0.850−0.525i)Λ(1−s)
Degree: |
2 |
Conductor: |
1600
= 26⋅52
|
Sign: |
0.850−0.525i
|
Analytic conductor: |
0.798504 |
Root analytic conductor: |
0.893590 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1600(193,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1600, ( :0), 0.850−0.525i)
|
Particular Values
L(21) |
≈ |
1.673553564 |
L(21) |
≈ |
1.673553564 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+(−1−i)T+iT2 |
| 7 | 1+(−1+i)T−iT2 |
| 11 | 1+T2 |
| 13 | 1+iT2 |
| 17 | 1−iT2 |
| 19 | 1−T2 |
| 23 | 1+(1+i)T+iT2 |
| 29 | 1−2iT−T2 |
| 31 | 1+T2 |
| 37 | 1−iT2 |
| 41 | 1+T2 |
| 43 | 1+(1+i)T+iT2 |
| 47 | 1+(1−i)T−iT2 |
| 53 | 1+iT2 |
| 59 | 1−T2 |
| 61 | 1+T2 |
| 67 | 1+(1−i)T−iT2 |
| 71 | 1+T2 |
| 73 | 1+iT2 |
| 79 | 1−T2 |
| 83 | 1+(1+i)T+iT2 |
| 89 | 1−2iT−T2 |
| 97 | 1−iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.702788932087076384253681683392, −8.768539091866812237486005072799, −8.290612172734234462516375814948, −7.49852891830371670949769420491, −6.59533025265282169763422979388, −5.22812367134743977701325713085, −4.48116622592691338547202548855, −3.84278008463460074942882744315, −2.89458068973806471730627222799, −1.59584208834128298357390072734,
1.64300569239688915817781434294, 2.24492217076563886293446112366, 3.27385646867688932235280580080, 4.50916375256853110461324208476, 5.55617438434589328247878086889, 6.35910984698418105891142023115, 7.42271215906803915216995867190, 8.081474969791895606429605224165, 8.424259432951252227075141732133, 9.336137767135761875116565430071