L(s) = 1 | − 5-s − 2.46·7-s − 4.19·11-s − 3.26·13-s + 7.73·17-s + 0.732·19-s + 23-s + 25-s − 7.19·29-s − 31-s + 2.46·35-s − 11.3·37-s + 7.73·41-s + 3.46·43-s − 0.732·47-s − 0.928·49-s − 6.66·53-s + 4.19·55-s + 7.19·59-s − 10.7·61-s + 3.26·65-s + 5·67-s + 14.1·71-s − 11.2·73-s + 10.3·77-s + 4·79-s + 6.66·83-s + ⋯ |
L(s) = 1 | − 0.447·5-s − 0.931·7-s − 1.26·11-s − 0.906·13-s + 1.87·17-s + 0.167·19-s + 0.208·23-s + 0.200·25-s − 1.33·29-s − 0.179·31-s + 0.416·35-s − 1.87·37-s + 1.20·41-s + 0.528·43-s − 0.106·47-s − 0.132·49-s − 0.914·53-s + 0.565·55-s + 0.936·59-s − 1.37·61-s + 0.405·65-s + 0.610·67-s + 1.67·71-s − 1.31·73-s + 1.17·77-s + 0.450·79-s + 0.731·83-s + ⋯ |
Λ(s)=(=(4140s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4140s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.9766443016 |
L(21) |
≈ |
0.9766443016 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+T |
| 23 | 1−T |
good | 7 | 1+2.46T+7T2 |
| 11 | 1+4.19T+11T2 |
| 13 | 1+3.26T+13T2 |
| 17 | 1−7.73T+17T2 |
| 19 | 1−0.732T+19T2 |
| 29 | 1+7.19T+29T2 |
| 31 | 1+T+31T2 |
| 37 | 1+11.3T+37T2 |
| 41 | 1−7.73T+41T2 |
| 43 | 1−3.46T+43T2 |
| 47 | 1+0.732T+47T2 |
| 53 | 1+6.66T+53T2 |
| 59 | 1−7.19T+59T2 |
| 61 | 1+10.7T+61T2 |
| 67 | 1−5T+67T2 |
| 71 | 1−14.1T+71T2 |
| 73 | 1+11.2T+73T2 |
| 79 | 1−4T+79T2 |
| 83 | 1−6.66T+83T2 |
| 89 | 1−16.3T+89T2 |
| 97 | 1−4T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.271666437361429482486957972676, −7.48471910346565190155131549742, −7.31013820306469509939203608450, −6.11824043870575387337461853206, −5.42390838381168569674357040944, −4.80811105984273144911628066603, −3.53442423262008260350546858260, −3.15549718158090759245168180559, −2.07921534633835402326857337660, −0.53604838269124823699051315911,
0.53604838269124823699051315911, 2.07921534633835402326857337660, 3.15549718158090759245168180559, 3.53442423262008260350546858260, 4.80811105984273144911628066603, 5.42390838381168569674357040944, 6.11824043870575387337461853206, 7.31013820306469509939203608450, 7.48471910346565190155131549742, 8.271666437361429482486957972676