Properties

Label 2-4140-1.1-c1-0-1
Degree $2$
Conductor $4140$
Sign $1$
Analytic cond. $33.0580$
Root an. cond. $5.74961$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 2.46·7-s − 4.19·11-s − 3.26·13-s + 7.73·17-s + 0.732·19-s + 23-s + 25-s − 7.19·29-s − 31-s + 2.46·35-s − 11.3·37-s + 7.73·41-s + 3.46·43-s − 0.732·47-s − 0.928·49-s − 6.66·53-s + 4.19·55-s + 7.19·59-s − 10.7·61-s + 3.26·65-s + 5·67-s + 14.1·71-s − 11.2·73-s + 10.3·77-s + 4·79-s + 6.66·83-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.931·7-s − 1.26·11-s − 0.906·13-s + 1.87·17-s + 0.167·19-s + 0.208·23-s + 0.200·25-s − 1.33·29-s − 0.179·31-s + 0.416·35-s − 1.87·37-s + 1.20·41-s + 0.528·43-s − 0.106·47-s − 0.132·49-s − 0.914·53-s + 0.565·55-s + 0.936·59-s − 1.37·61-s + 0.405·65-s + 0.610·67-s + 1.67·71-s − 1.31·73-s + 1.17·77-s + 0.450·79-s + 0.731·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4140 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4140\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 23\)
Sign: $1$
Analytic conductor: \(33.0580\)
Root analytic conductor: \(5.74961\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4140,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9766443016\)
\(L(\frac12)\) \(\approx\) \(0.9766443016\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
23 \( 1 - T \)
good7 \( 1 + 2.46T + 7T^{2} \)
11 \( 1 + 4.19T + 11T^{2} \)
13 \( 1 + 3.26T + 13T^{2} \)
17 \( 1 - 7.73T + 17T^{2} \)
19 \( 1 - 0.732T + 19T^{2} \)
29 \( 1 + 7.19T + 29T^{2} \)
31 \( 1 + T + 31T^{2} \)
37 \( 1 + 11.3T + 37T^{2} \)
41 \( 1 - 7.73T + 41T^{2} \)
43 \( 1 - 3.46T + 43T^{2} \)
47 \( 1 + 0.732T + 47T^{2} \)
53 \( 1 + 6.66T + 53T^{2} \)
59 \( 1 - 7.19T + 59T^{2} \)
61 \( 1 + 10.7T + 61T^{2} \)
67 \( 1 - 5T + 67T^{2} \)
71 \( 1 - 14.1T + 71T^{2} \)
73 \( 1 + 11.2T + 73T^{2} \)
79 \( 1 - 4T + 79T^{2} \)
83 \( 1 - 6.66T + 83T^{2} \)
89 \( 1 - 16.3T + 89T^{2} \)
97 \( 1 - 4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.271666437361429482486957972676, −7.48471910346565190155131549742, −7.31013820306469509939203608450, −6.11824043870575387337461853206, −5.42390838381168569674357040944, −4.80811105984273144911628066603, −3.53442423262008260350546858260, −3.15549718158090759245168180559, −2.07921534633835402326857337660, −0.53604838269124823699051315911, 0.53604838269124823699051315911, 2.07921534633835402326857337660, 3.15549718158090759245168180559, 3.53442423262008260350546858260, 4.80811105984273144911628066603, 5.42390838381168569674357040944, 6.11824043870575387337461853206, 7.31013820306469509939203608450, 7.48471910346565190155131549742, 8.271666437361429482486957972676

Graph of the $Z$-function along the critical line