Properties

Label 2-4140-1.1-c1-0-10
Degree $2$
Conductor $4140$
Sign $1$
Analytic cond. $33.0580$
Root an. cond. $5.74961$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 4·7-s + 6·11-s − 13-s + 2·19-s − 23-s + 25-s − 9·29-s + 5·31-s − 4·35-s + 2·37-s + 9·41-s − 4·43-s + 3·47-s + 9·49-s + 6·53-s + 6·55-s + 2·61-s − 65-s − 10·67-s + 3·71-s − 7·73-s − 24·77-s − 10·79-s + 12·83-s + 4·91-s + 2·95-s + ⋯
L(s)  = 1  + 0.447·5-s − 1.51·7-s + 1.80·11-s − 0.277·13-s + 0.458·19-s − 0.208·23-s + 1/5·25-s − 1.67·29-s + 0.898·31-s − 0.676·35-s + 0.328·37-s + 1.40·41-s − 0.609·43-s + 0.437·47-s + 9/7·49-s + 0.824·53-s + 0.809·55-s + 0.256·61-s − 0.124·65-s − 1.22·67-s + 0.356·71-s − 0.819·73-s − 2.73·77-s − 1.12·79-s + 1.31·83-s + 0.419·91-s + 0.205·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4140 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4140\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 23\)
Sign: $1$
Analytic conductor: \(33.0580\)
Root analytic conductor: \(5.74961\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4140,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.828241162\)
\(L(\frac12)\) \(\approx\) \(1.828241162\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
23 \( 1 + T \)
good7 \( 1 + 4 T + p T^{2} \)
11 \( 1 - 6 T + p T^{2} \)
13 \( 1 + T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
29 \( 1 + 9 T + p T^{2} \)
31 \( 1 - 5 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 - 9 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 3 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 + 10 T + p T^{2} \)
71 \( 1 - 3 T + p T^{2} \)
73 \( 1 + 7 T + p T^{2} \)
79 \( 1 + 10 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 - 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.675195224509421244567010783131, −7.44458669533489548487414918137, −6.92397468338108808019310143609, −6.11387858034595661701643360874, −5.81664617436965714998858914525, −4.51281009230397575705652247627, −3.74499491504031266853477766636, −3.05859762092563524808570267988, −1.96419494679653881817999121224, −0.77418837928818037905531196406, 0.77418837928818037905531196406, 1.96419494679653881817999121224, 3.05859762092563524808570267988, 3.74499491504031266853477766636, 4.51281009230397575705652247627, 5.81664617436965714998858914525, 6.11387858034595661701643360874, 6.92397468338108808019310143609, 7.44458669533489548487414918137, 8.675195224509421244567010783131

Graph of the $Z$-function along the critical line