L(s) = 1 | − 5-s + 4.46·7-s + 6.19·11-s − 6.73·13-s + 4.26·17-s − 2.73·19-s + 23-s + 25-s + 3.19·29-s − 31-s − 4.46·35-s + 9.39·37-s + 4.26·41-s − 3.46·43-s + 2.73·47-s + 12.9·49-s + 10.6·53-s − 6.19·55-s − 3.19·59-s − 7.26·61-s + 6.73·65-s + 5·67-s − 10.1·71-s − 14.7·73-s + 27.6·77-s + 4·79-s − 10.6·83-s + ⋯ |
L(s) = 1 | − 0.447·5-s + 1.68·7-s + 1.86·11-s − 1.86·13-s + 1.03·17-s − 0.626·19-s + 0.208·23-s + 0.200·25-s + 0.593·29-s − 0.179·31-s − 0.754·35-s + 1.54·37-s + 0.666·41-s − 0.528·43-s + 0.398·47-s + 1.84·49-s + 1.46·53-s − 0.835·55-s − 0.416·59-s − 0.930·61-s + 0.835·65-s + 0.610·67-s − 1.20·71-s − 1.72·73-s + 3.15·77-s + 0.450·79-s − 1.17·83-s + ⋯ |
Λ(s)=(=(4140s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4140s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.395439397 |
L(21) |
≈ |
2.395439397 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+T |
| 23 | 1−T |
good | 7 | 1−4.46T+7T2 |
| 11 | 1−6.19T+11T2 |
| 13 | 1+6.73T+13T2 |
| 17 | 1−4.26T+17T2 |
| 19 | 1+2.73T+19T2 |
| 29 | 1−3.19T+29T2 |
| 31 | 1+T+31T2 |
| 37 | 1−9.39T+37T2 |
| 41 | 1−4.26T+41T2 |
| 43 | 1+3.46T+43T2 |
| 47 | 1−2.73T+47T2 |
| 53 | 1−10.6T+53T2 |
| 59 | 1+3.19T+59T2 |
| 61 | 1+7.26T+61T2 |
| 67 | 1−5T+67T2 |
| 71 | 1+10.1T+71T2 |
| 73 | 1+14.7T+73T2 |
| 79 | 1−4T+79T2 |
| 83 | 1+10.6T+83T2 |
| 89 | 1+4.39T+89T2 |
| 97 | 1−4T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.398394972117492602225408327999, −7.55491602449439102140022244576, −7.25851005391246496524177318065, −6.22161442695359963300102650094, −5.31749171100122395914654245978, −4.47178189430518470967501179811, −4.17806601028777823618010976529, −2.87801811757684074313834299640, −1.84670153597132589616586768874, −0.944740134060137521817513579406,
0.944740134060137521817513579406, 1.84670153597132589616586768874, 2.87801811757684074313834299640, 4.17806601028777823618010976529, 4.47178189430518470967501179811, 5.31749171100122395914654245978, 6.22161442695359963300102650094, 7.25851005391246496524177318065, 7.55491602449439102140022244576, 8.398394972117492602225408327999