Properties

Label 2-4140-1.1-c1-0-13
Degree $2$
Conductor $4140$
Sign $1$
Analytic cond. $33.0580$
Root an. cond. $5.74961$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 4.46·7-s + 6.19·11-s − 6.73·13-s + 4.26·17-s − 2.73·19-s + 23-s + 25-s + 3.19·29-s − 31-s − 4.46·35-s + 9.39·37-s + 4.26·41-s − 3.46·43-s + 2.73·47-s + 12.9·49-s + 10.6·53-s − 6.19·55-s − 3.19·59-s − 7.26·61-s + 6.73·65-s + 5·67-s − 10.1·71-s − 14.7·73-s + 27.6·77-s + 4·79-s − 10.6·83-s + ⋯
L(s)  = 1  − 0.447·5-s + 1.68·7-s + 1.86·11-s − 1.86·13-s + 1.03·17-s − 0.626·19-s + 0.208·23-s + 0.200·25-s + 0.593·29-s − 0.179·31-s − 0.754·35-s + 1.54·37-s + 0.666·41-s − 0.528·43-s + 0.398·47-s + 1.84·49-s + 1.46·53-s − 0.835·55-s − 0.416·59-s − 0.930·61-s + 0.835·65-s + 0.610·67-s − 1.20·71-s − 1.72·73-s + 3.15·77-s + 0.450·79-s − 1.17·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4140 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4140\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 23\)
Sign: $1$
Analytic conductor: \(33.0580\)
Root analytic conductor: \(5.74961\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4140,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.395439397\)
\(L(\frac12)\) \(\approx\) \(2.395439397\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
23 \( 1 - T \)
good7 \( 1 - 4.46T + 7T^{2} \)
11 \( 1 - 6.19T + 11T^{2} \)
13 \( 1 + 6.73T + 13T^{2} \)
17 \( 1 - 4.26T + 17T^{2} \)
19 \( 1 + 2.73T + 19T^{2} \)
29 \( 1 - 3.19T + 29T^{2} \)
31 \( 1 + T + 31T^{2} \)
37 \( 1 - 9.39T + 37T^{2} \)
41 \( 1 - 4.26T + 41T^{2} \)
43 \( 1 + 3.46T + 43T^{2} \)
47 \( 1 - 2.73T + 47T^{2} \)
53 \( 1 - 10.6T + 53T^{2} \)
59 \( 1 + 3.19T + 59T^{2} \)
61 \( 1 + 7.26T + 61T^{2} \)
67 \( 1 - 5T + 67T^{2} \)
71 \( 1 + 10.1T + 71T^{2} \)
73 \( 1 + 14.7T + 73T^{2} \)
79 \( 1 - 4T + 79T^{2} \)
83 \( 1 + 10.6T + 83T^{2} \)
89 \( 1 + 4.39T + 89T^{2} \)
97 \( 1 - 4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.398394972117492602225408327999, −7.55491602449439102140022244576, −7.25851005391246496524177318065, −6.22161442695359963300102650094, −5.31749171100122395914654245978, −4.47178189430518470967501179811, −4.17806601028777823618010976529, −2.87801811757684074313834299640, −1.84670153597132589616586768874, −0.944740134060137521817513579406, 0.944740134060137521817513579406, 1.84670153597132589616586768874, 2.87801811757684074313834299640, 4.17806601028777823618010976529, 4.47178189430518470967501179811, 5.31749171100122395914654245978, 6.22161442695359963300102650094, 7.25851005391246496524177318065, 7.55491602449439102140022244576, 8.398394972117492602225408327999

Graph of the $Z$-function along the critical line