L(s) = 1 | − 5-s − 3·7-s + 2·11-s − 2·13-s + 7·17-s − 6·19-s − 23-s + 25-s + 9·29-s + 9·31-s + 3·35-s − 7·37-s − 5·41-s − 8·47-s + 2·49-s + 11·53-s − 2·55-s − 9·59-s + 2·65-s − 3·67-s − 3·71-s − 6·73-s − 6·77-s − 8·79-s − 5·83-s − 7·85-s + 6·91-s + ⋯ |
L(s) = 1 | − 0.447·5-s − 1.13·7-s + 0.603·11-s − 0.554·13-s + 1.69·17-s − 1.37·19-s − 0.208·23-s + 1/5·25-s + 1.67·29-s + 1.61·31-s + 0.507·35-s − 1.15·37-s − 0.780·41-s − 1.16·47-s + 2/7·49-s + 1.51·53-s − 0.269·55-s − 1.17·59-s + 0.248·65-s − 0.366·67-s − 0.356·71-s − 0.702·73-s − 0.683·77-s − 0.900·79-s − 0.548·83-s − 0.759·85-s + 0.628·91-s + ⋯ |
Λ(s)=(=(4140s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(4140s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+T |
| 23 | 1+T |
good | 7 | 1+3T+pT2 |
| 11 | 1−2T+pT2 |
| 13 | 1+2T+pT2 |
| 17 | 1−7T+pT2 |
| 19 | 1+6T+pT2 |
| 29 | 1−9T+pT2 |
| 31 | 1−9T+pT2 |
| 37 | 1+7T+pT2 |
| 41 | 1+5T+pT2 |
| 43 | 1+pT2 |
| 47 | 1+8T+pT2 |
| 53 | 1−11T+pT2 |
| 59 | 1+9T+pT2 |
| 61 | 1+pT2 |
| 67 | 1+3T+pT2 |
| 71 | 1+3T+pT2 |
| 73 | 1+6T+pT2 |
| 79 | 1+8T+pT2 |
| 83 | 1+5T+pT2 |
| 89 | 1+pT2 |
| 97 | 1+10T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.198352029776081704179962583997, −7.20665802211394294788507076701, −6.58224189435894862107686196920, −6.03471583126998769636769855173, −4.98010725817959605569098291710, −4.18959516479436501828774024575, −3.33632083290262564079618868160, −2.70081086208938402175006033537, −1.28374529154109134819146796964, 0,
1.28374529154109134819146796964, 2.70081086208938402175006033537, 3.33632083290262564079618868160, 4.18959516479436501828774024575, 4.98010725817959605569098291710, 6.03471583126998769636769855173, 6.58224189435894862107686196920, 7.20665802211394294788507076701, 8.198352029776081704179962583997