Properties

Label 2-4140-1.1-c1-0-25
Degree $2$
Conductor $4140$
Sign $-1$
Analytic cond. $33.0580$
Root an. cond. $5.74961$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 2·7-s + 4·11-s − 2·13-s − 6·17-s + 2·19-s + 23-s + 25-s + 4·29-s + 8·31-s + 2·35-s + 2·37-s − 6·43-s + 4·47-s − 3·49-s − 10·53-s − 4·55-s − 4·59-s − 6·61-s + 2·65-s − 10·67-s + 8·71-s − 10·73-s − 8·77-s − 14·79-s + 4·83-s + 6·85-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.755·7-s + 1.20·11-s − 0.554·13-s − 1.45·17-s + 0.458·19-s + 0.208·23-s + 1/5·25-s + 0.742·29-s + 1.43·31-s + 0.338·35-s + 0.328·37-s − 0.914·43-s + 0.583·47-s − 3/7·49-s − 1.37·53-s − 0.539·55-s − 0.520·59-s − 0.768·61-s + 0.248·65-s − 1.22·67-s + 0.949·71-s − 1.17·73-s − 0.911·77-s − 1.57·79-s + 0.439·83-s + 0.650·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4140 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4140\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 23\)
Sign: $-1$
Analytic conductor: \(33.0580\)
Root analytic conductor: \(5.74961\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4140,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
23 \( 1 - T \)
good7 \( 1 + 2 T + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
29 \( 1 - 4 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 + 6 T + p T^{2} \)
47 \( 1 - 4 T + p T^{2} \)
53 \( 1 + 10 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 + 6 T + p T^{2} \)
67 \( 1 + 10 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 + 10 T + p T^{2} \)
79 \( 1 + 14 T + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.090753670292665678650630726104, −7.19318728875240680365809782499, −6.56603709386798265186780548010, −6.12352424703812886192007841034, −4.80136783253141896105575045128, −4.34277649858975340857680013722, −3.35934720941182887444251376190, −2.61752725197143501613702660246, −1.32657258305720663270738938186, 0, 1.32657258305720663270738938186, 2.61752725197143501613702660246, 3.35934720941182887444251376190, 4.34277649858975340857680013722, 4.80136783253141896105575045128, 6.12352424703812886192007841034, 6.56603709386798265186780548010, 7.19318728875240680365809782499, 8.090753670292665678650630726104

Graph of the $Z$-function along the critical line