L(s) = 1 | − 5-s − 2·7-s + 4·11-s − 2·13-s − 6·17-s + 2·19-s + 23-s + 25-s + 4·29-s + 8·31-s + 2·35-s + 2·37-s − 6·43-s + 4·47-s − 3·49-s − 10·53-s − 4·55-s − 4·59-s − 6·61-s + 2·65-s − 10·67-s + 8·71-s − 10·73-s − 8·77-s − 14·79-s + 4·83-s + 6·85-s + ⋯ |
L(s) = 1 | − 0.447·5-s − 0.755·7-s + 1.20·11-s − 0.554·13-s − 1.45·17-s + 0.458·19-s + 0.208·23-s + 1/5·25-s + 0.742·29-s + 1.43·31-s + 0.338·35-s + 0.328·37-s − 0.914·43-s + 0.583·47-s − 3/7·49-s − 1.37·53-s − 0.539·55-s − 0.520·59-s − 0.768·61-s + 0.248·65-s − 1.22·67-s + 0.949·71-s − 1.17·73-s − 0.911·77-s − 1.57·79-s + 0.439·83-s + 0.650·85-s + ⋯ |
Λ(s)=(=(4140s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(4140s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+T |
| 23 | 1−T |
good | 7 | 1+2T+pT2 |
| 11 | 1−4T+pT2 |
| 13 | 1+2T+pT2 |
| 17 | 1+6T+pT2 |
| 19 | 1−2T+pT2 |
| 29 | 1−4T+pT2 |
| 31 | 1−8T+pT2 |
| 37 | 1−2T+pT2 |
| 41 | 1+pT2 |
| 43 | 1+6T+pT2 |
| 47 | 1−4T+pT2 |
| 53 | 1+10T+pT2 |
| 59 | 1+4T+pT2 |
| 61 | 1+6T+pT2 |
| 67 | 1+10T+pT2 |
| 71 | 1−8T+pT2 |
| 73 | 1+10T+pT2 |
| 79 | 1+14T+pT2 |
| 83 | 1−4T+pT2 |
| 89 | 1−6T+pT2 |
| 97 | 1+2T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.090753670292665678650630726104, −7.19318728875240680365809782499, −6.56603709386798265186780548010, −6.12352424703812886192007841034, −4.80136783253141896105575045128, −4.34277649858975340857680013722, −3.35934720941182887444251376190, −2.61752725197143501613702660246, −1.32657258305720663270738938186, 0,
1.32657258305720663270738938186, 2.61752725197143501613702660246, 3.35934720941182887444251376190, 4.34277649858975340857680013722, 4.80136783253141896105575045128, 6.12352424703812886192007841034, 6.56603709386798265186780548010, 7.19318728875240680365809782499, 8.090753670292665678650630726104