L(s) = 1 | + 3.11·3-s − 3.70·5-s + 4.20·7-s + 6.70·9-s − 1.09·11-s + 13-s − 11.5·15-s + 0.298·17-s + 1.09·19-s + 13.1·21-s + 8.70·25-s + 11.5·27-s − 2·29-s − 5.13·31-s − 3.40·33-s − 15.5·35-s − 3.70·37-s + 3.11·39-s − 9.40·41-s − 5.29·43-s − 24.8·45-s + 4.20·47-s + 10.7·49-s + 0.929·51-s + 1.40·53-s + 4.04·55-s + 3.40·57-s + ⋯ |
L(s) = 1 | + 1.79·3-s − 1.65·5-s + 1.59·7-s + 2.23·9-s − 0.329·11-s + 0.277·13-s − 2.97·15-s + 0.0723·17-s + 0.250·19-s + 2.85·21-s + 1.74·25-s + 2.21·27-s − 0.371·29-s − 0.922·31-s − 0.592·33-s − 2.63·35-s − 0.608·37-s + 0.498·39-s − 1.46·41-s − 0.808·43-s − 3.69·45-s + 0.613·47-s + 1.52·49-s + 0.130·51-s + 0.192·53-s + 0.545·55-s + 0.450·57-s + ⋯ |
Λ(s)=(=(416s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(416s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.192573787 |
L(21) |
≈ |
2.192573787 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1−T |
good | 3 | 1−3.11T+3T2 |
| 5 | 1+3.70T+5T2 |
| 7 | 1−4.20T+7T2 |
| 11 | 1+1.09T+11T2 |
| 17 | 1−0.298T+17T2 |
| 19 | 1−1.09T+19T2 |
| 23 | 1+23T2 |
| 29 | 1+2T+29T2 |
| 31 | 1+5.13T+31T2 |
| 37 | 1+3.70T+37T2 |
| 41 | 1+9.40T+41T2 |
| 43 | 1+5.29T+43T2 |
| 47 | 1−4.20T+47T2 |
| 53 | 1−1.40T+53T2 |
| 59 | 1+13.5T+59T2 |
| 61 | 1−9.40T+61T2 |
| 67 | 1+11.3T+67T2 |
| 71 | 1−8.25T+71T2 |
| 73 | 1+6T+73T2 |
| 79 | 1+14.6T+79T2 |
| 83 | 1−7.32T+83T2 |
| 89 | 1+6T+89T2 |
| 97 | 1−8.80T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.27144267912799668933374417498, −10.31740728968048317657341225980, −8.894848668387295020147989288852, −8.408628391007486813206208698121, −7.70983541854264640308889868248, −7.23772232511848076950745793511, −4.95922426227104246141752968546, −4.04611840089777690187100592119, −3.20793014823390904891839771651, −1.72716761869207738952843222092,
1.72716761869207738952843222092, 3.20793014823390904891839771651, 4.04611840089777690187100592119, 4.95922426227104246141752968546, 7.23772232511848076950745793511, 7.70983541854264640308889868248, 8.408628391007486813206208698121, 8.894848668387295020147989288852, 10.31740728968048317657341225980, 11.27144267912799668933374417498