L(s) = 1 | + 2.56·3-s + 0.561·5-s − 0.561·7-s + 3.56·9-s + 2·11-s − 13-s + 1.43·15-s − 0.561·17-s + 6·19-s − 1.43·21-s − 4.68·25-s + 1.43·27-s − 8.24·29-s + 7.12·31-s + 5.12·33-s − 0.315·35-s − 9.68·37-s − 2.56·39-s + 7.12·41-s − 8.80·43-s + 2.00·45-s + 1.68·47-s − 6.68·49-s − 1.43·51-s − 4.87·53-s + 1.12·55-s + 15.3·57-s + ⋯ |
L(s) = 1 | + 1.47·3-s + 0.251·5-s − 0.212·7-s + 1.18·9-s + 0.603·11-s − 0.277·13-s + 0.371·15-s − 0.136·17-s + 1.37·19-s − 0.313·21-s − 0.936·25-s + 0.276·27-s − 1.53·29-s + 1.27·31-s + 0.891·33-s − 0.0533·35-s − 1.59·37-s − 0.410·39-s + 1.11·41-s − 1.34·43-s + 0.298·45-s + 0.245·47-s − 0.954·49-s − 0.201·51-s − 0.669·53-s + 0.151·55-s + 2.03·57-s + ⋯ |
Λ(s)=(=(416s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(416s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.238927647 |
L(21) |
≈ |
2.238927647 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+T |
good | 3 | 1−2.56T+3T2 |
| 5 | 1−0.561T+5T2 |
| 7 | 1+0.561T+7T2 |
| 11 | 1−2T+11T2 |
| 17 | 1+0.561T+17T2 |
| 19 | 1−6T+19T2 |
| 23 | 1+23T2 |
| 29 | 1+8.24T+29T2 |
| 31 | 1−7.12T+31T2 |
| 37 | 1+9.68T+37T2 |
| 41 | 1−7.12T+41T2 |
| 43 | 1+8.80T+43T2 |
| 47 | 1−1.68T+47T2 |
| 53 | 1+4.87T+53T2 |
| 59 | 1+6T+59T2 |
| 61 | 1−13.3T+61T2 |
| 67 | 1−6T+67T2 |
| 71 | 1+1.68T+71T2 |
| 73 | 1−10T+73T2 |
| 79 | 1−12T+79T2 |
| 83 | 1+17.3T+83T2 |
| 89 | 1+8.24T+89T2 |
| 97 | 1+6T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.23461220324178498488048635367, −9.751879759476835518902712204197, −9.554414948318633638956058359001, −8.491922494420523496462340846268, −7.68638232220040779727430308657, −6.74646716726994014464223907671, −5.39667206829653893083510538697, −3.94563140609196492072449267321, −3.05843773369488483717877797781, −1.79757123529249810532635130140,
1.79757123529249810532635130140, 3.05843773369488483717877797781, 3.94563140609196492072449267321, 5.39667206829653893083510538697, 6.74646716726994014464223907671, 7.68638232220040779727430308657, 8.491922494420523496462340846268, 9.554414948318633638956058359001, 9.751879759476835518902712204197, 11.23461220324178498488048635367