L(s) = 1 | − 3-s − 5-s − 5·7-s − 26·9-s − 10·11-s − 13·13-s + 15-s + 93·17-s + 82·19-s + 5·21-s + 192·23-s − 124·25-s + 53·27-s − 106·29-s − 172·31-s + 10·33-s + 5·35-s + 379·37-s + 13·39-s − 148·41-s + 329·43-s + 26·45-s + 631·47-s − 318·49-s − 93·51-s + 160·53-s + 10·55-s + ⋯ |
L(s) = 1 | − 0.192·3-s − 0.0894·5-s − 0.269·7-s − 0.962·9-s − 0.274·11-s − 0.277·13-s + 0.0172·15-s + 1.32·17-s + 0.990·19-s + 0.0519·21-s + 1.74·23-s − 0.991·25-s + 0.377·27-s − 0.678·29-s − 0.996·31-s + 0.0527·33-s + 0.0241·35-s + 1.68·37-s + 0.0533·39-s − 0.563·41-s + 1.16·43-s + 0.0861·45-s + 1.95·47-s − 0.927·49-s − 0.255·51-s + 0.414·53-s + 0.0245·55-s + ⋯ |
Λ(s)=(=(416s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(416s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.479020673 |
L(21) |
≈ |
1.479020673 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+pT |
good | 3 | 1+T+p3T2 |
| 5 | 1+T+p3T2 |
| 7 | 1+5T+p3T2 |
| 11 | 1+10T+p3T2 |
| 17 | 1−93T+p3T2 |
| 19 | 1−82T+p3T2 |
| 23 | 1−192T+p3T2 |
| 29 | 1+106T+p3T2 |
| 31 | 1+172T+p3T2 |
| 37 | 1−379T+p3T2 |
| 41 | 1+148T+p3T2 |
| 43 | 1−329T+p3T2 |
| 47 | 1−631T+p3T2 |
| 53 | 1−160T+p3T2 |
| 59 | 1−478T+p3T2 |
| 61 | 1−300T+p3T2 |
| 67 | 1−722T+p3T2 |
| 71 | 1+335T+p3T2 |
| 73 | 1−90T+p3T2 |
| 79 | 1−788T+p3T2 |
| 83 | 1+96T+p3T2 |
| 89 | 1+866T+p3T2 |
| 97 | 1+998T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.94380230604581157637976489044, −9.802567650855079415159037195789, −9.099782893744442444345235525495, −7.919908741852479378930667334438, −7.18043263731658985938298302545, −5.80194998140012414413386979161, −5.24451636886060418907270089159, −3.66637072604405912300150358104, −2.64129584064889962695520891714, −0.792207331854442004672296517207,
0.792207331854442004672296517207, 2.64129584064889962695520891714, 3.66637072604405912300150358104, 5.24451636886060418907270089159, 5.80194998140012414413386979161, 7.18043263731658985938298302545, 7.919908741852479378930667334438, 9.099782893744442444345235525495, 9.802567650855079415159037195789, 10.94380230604581157637976489044