Properties

Label 2-416-1.1-c3-0-8
Degree $2$
Conductor $416$
Sign $1$
Analytic cond. $24.5447$
Root an. cond. $4.95427$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 5·7-s − 26·9-s − 10·11-s − 13·13-s + 15-s + 93·17-s + 82·19-s + 5·21-s + 192·23-s − 124·25-s + 53·27-s − 106·29-s − 172·31-s + 10·33-s + 5·35-s + 379·37-s + 13·39-s − 148·41-s + 329·43-s + 26·45-s + 631·47-s − 318·49-s − 93·51-s + 160·53-s + 10·55-s + ⋯
L(s)  = 1  − 0.192·3-s − 0.0894·5-s − 0.269·7-s − 0.962·9-s − 0.274·11-s − 0.277·13-s + 0.0172·15-s + 1.32·17-s + 0.990·19-s + 0.0519·21-s + 1.74·23-s − 0.991·25-s + 0.377·27-s − 0.678·29-s − 0.996·31-s + 0.0527·33-s + 0.0241·35-s + 1.68·37-s + 0.0533·39-s − 0.563·41-s + 1.16·43-s + 0.0861·45-s + 1.95·47-s − 0.927·49-s − 0.255·51-s + 0.414·53-s + 0.0245·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(416\)    =    \(2^{5} \cdot 13\)
Sign: $1$
Analytic conductor: \(24.5447\)
Root analytic conductor: \(4.95427\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 416,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.479020673\)
\(L(\frac12)\) \(\approx\) \(1.479020673\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 + p T \)
good3 \( 1 + T + p^{3} T^{2} \)
5 \( 1 + T + p^{3} T^{2} \)
7 \( 1 + 5 T + p^{3} T^{2} \)
11 \( 1 + 10 T + p^{3} T^{2} \)
17 \( 1 - 93 T + p^{3} T^{2} \)
19 \( 1 - 82 T + p^{3} T^{2} \)
23 \( 1 - 192 T + p^{3} T^{2} \)
29 \( 1 + 106 T + p^{3} T^{2} \)
31 \( 1 + 172 T + p^{3} T^{2} \)
37 \( 1 - 379 T + p^{3} T^{2} \)
41 \( 1 + 148 T + p^{3} T^{2} \)
43 \( 1 - 329 T + p^{3} T^{2} \)
47 \( 1 - 631 T + p^{3} T^{2} \)
53 \( 1 - 160 T + p^{3} T^{2} \)
59 \( 1 - 478 T + p^{3} T^{2} \)
61 \( 1 - 300 T + p^{3} T^{2} \)
67 \( 1 - 722 T + p^{3} T^{2} \)
71 \( 1 + 335 T + p^{3} T^{2} \)
73 \( 1 - 90 T + p^{3} T^{2} \)
79 \( 1 - 788 T + p^{3} T^{2} \)
83 \( 1 + 96 T + p^{3} T^{2} \)
89 \( 1 + 866 T + p^{3} T^{2} \)
97 \( 1 + 998 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.94380230604581157637976489044, −9.802567650855079415159037195789, −9.099782893744442444345235525495, −7.919908741852479378930667334438, −7.18043263731658985938298302545, −5.80194998140012414413386979161, −5.24451636886060418907270089159, −3.66637072604405912300150358104, −2.64129584064889962695520891714, −0.792207331854442004672296517207, 0.792207331854442004672296517207, 2.64129584064889962695520891714, 3.66637072604405912300150358104, 5.24451636886060418907270089159, 5.80194998140012414413386979161, 7.18043263731658985938298302545, 7.919908741852479378930667334438, 9.099782893744442444345235525495, 9.802567650855079415159037195789, 10.94380230604581157637976489044

Graph of the $Z$-function along the critical line