L(s) = 1 | + (2.36 − 1.36i)3-s − 0.267·5-s + (3 + 1.73i)7-s + (2.23 − 3.86i)9-s + (1 + 1.73i)11-s + (−2.59 − 2.5i)13-s + (−0.633 + 0.366i)15-s + (−3.23 + 5.59i)17-s + (2.36 − 4.09i)19-s + 9.46·21-s + (−1.09 − 1.90i)23-s − 4.92·25-s − 4.00i·27-s + (2.59 − 1.5i)29-s + 1.26i·31-s + ⋯ |
L(s) = 1 | + (1.36 − 0.788i)3-s − 0.119·5-s + (1.13 + 0.654i)7-s + (0.744 − 1.28i)9-s + (0.301 + 0.522i)11-s + (−0.720 − 0.693i)13-s + (−0.163 + 0.0945i)15-s + (−0.783 + 1.35i)17-s + (0.542 − 0.940i)19-s + 2.06·21-s + (−0.228 − 0.396i)23-s − 0.985·25-s − 0.769i·27-s + (0.482 − 0.278i)29-s + 0.227i·31-s + ⋯ |
Λ(s)=(=(416s/2ΓC(s)L(s)(0.869+0.494i)Λ(2−s)
Λ(s)=(=(416s/2ΓC(s+1/2)L(s)(0.869+0.494i)Λ(1−s)
Degree: |
2 |
Conductor: |
416
= 25⋅13
|
Sign: |
0.869+0.494i
|
Analytic conductor: |
3.32177 |
Root analytic conductor: |
1.82257 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ416(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 416, ( :1/2), 0.869+0.494i)
|
Particular Values
L(1) |
≈ |
2.14387−0.567088i |
L(21) |
≈ |
2.14387−0.567088i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+(2.59+2.5i)T |
good | 3 | 1+(−2.36+1.36i)T+(1.5−2.59i)T2 |
| 5 | 1+0.267T+5T2 |
| 7 | 1+(−3−1.73i)T+(3.5+6.06i)T2 |
| 11 | 1+(−1−1.73i)T+(−5.5+9.52i)T2 |
| 17 | 1+(3.23−5.59i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−2.36+4.09i)T+(−9.5−16.4i)T2 |
| 23 | 1+(1.09+1.90i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−2.59+1.5i)T+(14.5−25.1i)T2 |
| 31 | 1−1.26iT−31T2 |
| 37 | 1+(3.86+6.69i)T+(−18.5+32.0i)T2 |
| 41 | 1+(1.03−0.598i)T+(20.5−35.5i)T2 |
| 43 | 1+(8.19+4.73i)T+(21.5+37.2i)T2 |
| 47 | 1−3.26iT−47T2 |
| 53 | 1−9.92iT−53T2 |
| 59 | 1+(−3.73+6.46i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−0.866−0.5i)T+(30.5+52.8i)T2 |
| 67 | 1+(−5.36−9.29i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−11.0−6.36i)T+(35.5+61.4i)T2 |
| 73 | 1+1.73iT−73T2 |
| 79 | 1+10.3T+79T2 |
| 83 | 1+5.46T+83T2 |
| 89 | 1+(0.464−0.267i)T+(44.5−77.0i)T2 |
| 97 | 1+(−5.19−3i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.27762376141748608947925103301, −10.06893405464887217921104285338, −8.970989151746805224911745052336, −8.346373009948488024902477988936, −7.67534564828097902615337365244, −6.74743233091417246276279002591, −5.30055637005559759203860821303, −4.04392846819313277584010069805, −2.58420996050725076309309086862, −1.76629636397938933427033842376,
1.89807204594735360958070209626, 3.28787758266785757970085005025, 4.27949759026825404671493706634, 5.08458303967688827187535036294, 6.91078046821121709237118430380, 7.88657552138808743317443178834, 8.494390710908247392814130186058, 9.528093481241718164448345801617, 10.07419271348816401205714715288, 11.32003498994018216089960939791