L(s) = 1 | + (0.928 + 1.60i)3-s + (−1.51 + 1.51i)5-s + (−2.97 + 0.797i)7-s + (−0.223 + 0.386i)9-s + (−0.865 − 0.231i)11-s + (0.159 + 3.60i)13-s + (−3.84 − 1.03i)15-s + (1.05 + 0.610i)17-s + (−6.68 + 1.79i)19-s + (−4.04 − 4.04i)21-s + (0.433 + 0.751i)23-s + 0.390i·25-s + 4.74·27-s + (−3.26 + 1.88i)29-s + (5.06 − 5.06i)31-s + ⋯ |
L(s) = 1 | + (0.535 + 0.928i)3-s + (−0.678 + 0.678i)5-s + (−1.12 + 0.301i)7-s + (−0.0743 + 0.128i)9-s + (−0.260 − 0.0699i)11-s + (0.0442 + 0.999i)13-s + (−0.994 − 0.266i)15-s + (0.256 + 0.147i)17-s + (−1.53 + 0.410i)19-s + (−0.883 − 0.883i)21-s + (0.0904 + 0.156i)23-s + 0.0780i·25-s + 0.912·27-s + (−0.606 + 0.350i)29-s + (0.909 − 0.909i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.836 - 0.547i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.836 - 0.547i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.282816 + 0.949214i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.282816 + 0.949214i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (-0.159 - 3.60i)T \) |
good | 3 | \( 1 + (-0.928 - 1.60i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (1.51 - 1.51i)T - 5iT^{2} \) |
| 7 | \( 1 + (2.97 - 0.797i)T + (6.06 - 3.5i)T^{2} \) |
| 11 | \( 1 + (0.865 + 0.231i)T + (9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 + (-1.05 - 0.610i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (6.68 - 1.79i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-0.433 - 0.751i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (3.26 - 1.88i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-5.06 + 5.06i)T - 31iT^{2} \) |
| 37 | \( 1 + (-2.52 + 9.43i)T + (-32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + (3.12 - 11.6i)T + (-35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (-4.22 - 2.44i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-4.24 - 4.24i)T + 47iT^{2} \) |
| 53 | \( 1 - 2.16iT - 53T^{2} \) |
| 59 | \( 1 + (0.0382 + 0.142i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (-7.26 - 4.19i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.422 - 1.57i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + (-4.27 - 15.9i)T + (-61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + (-9.55 + 9.55i)T - 73iT^{2} \) |
| 79 | \( 1 + 6.37iT - 79T^{2} \) |
| 83 | \( 1 + (3.53 + 3.53i)T + 83iT^{2} \) |
| 89 | \( 1 + (-9.33 - 2.50i)T + (77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (10.6 - 2.86i)T + (84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.38764246548789437148579454738, −10.58533010989516777108197337417, −9.679217058099894734141582734341, −9.094294992364563831452115053389, −8.020398560411429931563490701016, −6.85815375726010592225065996246, −6.03217806675435271001289001740, −4.33527791755000266055799893590, −3.66432876481408207783649804122, −2.62037520448322280606885243100,
0.58425726421003469668418697927, 2.44476016849574478644300608231, 3.65919645881682509264509302341, 4.93613017296035212807327182854, 6.36772196808951909708347015785, 7.18276507894847054547160498531, 8.161556968089672830096835902865, 8.661068699279373549014132692137, 9.971210224866643484570630443669, 10.74682628725668672945377490983