L(s) = 1 | + (−0.0597 − 0.103i)3-s + (−2.08 + 2.08i)5-s + (−1.83 + 0.491i)7-s + (1.49 − 2.58i)9-s + (−5.53 − 1.48i)11-s + (0.0282 − 3.60i)13-s + (0.340 + 0.0913i)15-s + (−3.70 − 2.13i)17-s + (4.12 − 1.10i)19-s + (0.160 + 0.160i)21-s + (−1.56 − 2.70i)23-s − 3.72i·25-s − 0.715·27-s + (−3.41 + 1.97i)29-s + (−5.91 + 5.91i)31-s + ⋯ |
L(s) = 1 | + (−0.0344 − 0.0597i)3-s + (−0.934 + 0.934i)5-s + (−0.693 + 0.185i)7-s + (0.497 − 0.861i)9-s + (−1.66 − 0.446i)11-s + (0.00782 − 0.999i)13-s + (0.0880 + 0.0235i)15-s + (−0.897 − 0.518i)17-s + (0.946 − 0.253i)19-s + (0.0350 + 0.0350i)21-s + (−0.325 − 0.563i)23-s − 0.745i·25-s − 0.137·27-s + (−0.634 + 0.366i)29-s + (−1.06 + 1.06i)31-s + ⋯ |
Λ(s)=(=(416s/2ΓC(s)L(s)(−0.849+0.527i)Λ(2−s)
Λ(s)=(=(416s/2ΓC(s+1/2)L(s)(−0.849+0.527i)Λ(1−s)
Degree: |
2 |
Conductor: |
416
= 25⋅13
|
Sign: |
−0.849+0.527i
|
Analytic conductor: |
3.32177 |
Root analytic conductor: |
1.82257 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ416(271,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 416, ( :1/2), −0.849+0.527i)
|
Particular Values
L(1) |
≈ |
0.0610533−0.213996i |
L(21) |
≈ |
0.0610533−0.213996i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+(−0.0282+3.60i)T |
good | 3 | 1+(0.0597+0.103i)T+(−1.5+2.59i)T2 |
| 5 | 1+(2.08−2.08i)T−5iT2 |
| 7 | 1+(1.83−0.491i)T+(6.06−3.5i)T2 |
| 11 | 1+(5.53+1.48i)T+(9.52+5.5i)T2 |
| 17 | 1+(3.70+2.13i)T+(8.5+14.7i)T2 |
| 19 | 1+(−4.12+1.10i)T+(16.4−9.5i)T2 |
| 23 | 1+(1.56+2.70i)T+(−11.5+19.9i)T2 |
| 29 | 1+(3.41−1.97i)T+(14.5−25.1i)T2 |
| 31 | 1+(5.91−5.91i)T−31iT2 |
| 37 | 1+(0.0218−0.0814i)T+(−32.0−18.5i)T2 |
| 41 | 1+(1.89−7.07i)T+(−35.5−20.5i)T2 |
| 43 | 1+(−3.96−2.28i)T+(21.5+37.2i)T2 |
| 47 | 1+(−1.33−1.33i)T+47iT2 |
| 53 | 1+7.65iT−53T2 |
| 59 | 1+(0.332+1.23i)T+(−51.0+29.5i)T2 |
| 61 | 1+(5.12+2.95i)T+(30.5+52.8i)T2 |
| 67 | 1+(0.943−3.52i)T+(−58.0−33.5i)T2 |
| 71 | 1+(1.87+6.98i)T+(−61.4+35.5i)T2 |
| 73 | 1+(2.35−2.35i)T−73iT2 |
| 79 | 1+4.48iT−79T2 |
| 83 | 1+(0.871+0.871i)T+83iT2 |
| 89 | 1+(0.761+0.204i)T+(77.0+44.5i)T2 |
| 97 | 1+(−11.8+3.18i)T+(84.0−48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.83136610905134386353918849243, −10.11829826503382618448858807804, −9.043542094314991423204339600828, −7.83401023351452000154507038042, −7.20951971853189919703015286500, −6.22099859675046300523166166618, −5.01587347882311075681856569336, −3.45170685483473557780746556358, −2.87994524550062699555559670175, −0.13530578043297229424211231585,
2.09967550700940040725919181612, 3.84973400691633183750223291300, 4.68238085309089028128228035497, 5.68465384852507084837009857144, 7.31788577128033686607840914799, 7.72109871794912207651550986995, 8.839591858113367345709770906727, 9.783292211111754404344773578959, 10.69036758427617993263424511740, 11.58884375772164680767089512166