L(s) = 1 | + (−1.11 − 1.92i)3-s + (0.0693 − 0.0693i)5-s + (−3.36 + 0.901i)7-s + (−0.979 + 1.69i)9-s + (0.305 + 0.0819i)11-s + (−3.13 + 1.78i)13-s + (−0.210 − 0.0565i)15-s + (−5.48 − 3.16i)17-s + (0.397 − 0.106i)19-s + (5.48 + 5.48i)21-s + (3.68 + 6.38i)23-s + 4.99i·25-s − 2.32·27-s + (−3.16 + 1.82i)29-s + (−1.12 + 1.12i)31-s + ⋯ |
L(s) = 1 | + (−0.642 − 1.11i)3-s + (0.0310 − 0.0310i)5-s + (−1.27 + 0.340i)7-s + (−0.326 + 0.565i)9-s + (0.0921 + 0.0247i)11-s + (−0.868 + 0.495i)13-s + (−0.0544 − 0.0145i)15-s + (−1.33 − 0.768i)17-s + (0.0911 − 0.0244i)19-s + (1.19 + 1.19i)21-s + (0.768 + 1.33i)23-s + 0.998i·25-s − 0.446·27-s + (−0.588 + 0.339i)29-s + (−0.201 + 0.201i)31-s + ⋯ |
Λ(s)=(=(416s/2ΓC(s)L(s)(−0.735−0.677i)Λ(2−s)
Λ(s)=(=(416s/2ΓC(s+1/2)L(s)(−0.735−0.677i)Λ(1−s)
Degree: |
2 |
Conductor: |
416
= 25⋅13
|
Sign: |
−0.735−0.677i
|
Analytic conductor: |
3.32177 |
Root analytic conductor: |
1.82257 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ416(271,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 416, ( :1/2), −0.735−0.677i)
|
Particular Values
L(1) |
≈ |
0.0166899+0.0427574i |
L(21) |
≈ |
0.0166899+0.0427574i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+(3.13−1.78i)T |
good | 3 | 1+(1.11+1.92i)T+(−1.5+2.59i)T2 |
| 5 | 1+(−0.0693+0.0693i)T−5iT2 |
| 7 | 1+(3.36−0.901i)T+(6.06−3.5i)T2 |
| 11 | 1+(−0.305−0.0819i)T+(9.52+5.5i)T2 |
| 17 | 1+(5.48+3.16i)T+(8.5+14.7i)T2 |
| 19 | 1+(−0.397+0.106i)T+(16.4−9.5i)T2 |
| 23 | 1+(−3.68−6.38i)T+(−11.5+19.9i)T2 |
| 29 | 1+(3.16−1.82i)T+(14.5−25.1i)T2 |
| 31 | 1+(1.12−1.12i)T−31iT2 |
| 37 | 1+(−0.804+3.00i)T+(−32.0−18.5i)T2 |
| 41 | 1+(−1.85+6.91i)T+(−35.5−20.5i)T2 |
| 43 | 1+(4.88+2.82i)T+(21.5+37.2i)T2 |
| 47 | 1+(6.15+6.15i)T+47iT2 |
| 53 | 1−3.89iT−53T2 |
| 59 | 1+(−2.51−9.38i)T+(−51.0+29.5i)T2 |
| 61 | 1+(11.9+6.88i)T+(30.5+52.8i)T2 |
| 67 | 1+(−3.16+11.8i)T+(−58.0−33.5i)T2 |
| 71 | 1+(1.81+6.78i)T+(−61.4+35.5i)T2 |
| 73 | 1+(−1.49+1.49i)T−73iT2 |
| 79 | 1+10.3iT−79T2 |
| 83 | 1+(2.53+2.53i)T+83iT2 |
| 89 | 1+(−0.110−0.0296i)T+(77.0+44.5i)T2 |
| 97 | 1+(−6.28+1.68i)T+(84.0−48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.90413344058827020232826635867, −9.471131725698682293257869361388, −9.120157491401255198346623103186, −7.34575926149391197019399540321, −7.00261361513033637645140801573, −6.06065688122737281705935328249, −5.04854973183695569466040269709, −3.36570430643453266443203606513, −1.94131753314559723368017901025, −0.02979527907365737236145918820,
2.76511263215462049340564738413, 4.07319329257073920655319450545, 4.85056821280595744400649037978, 6.12348335037236385888045537659, 6.81535522783244125645748530173, 8.244653512599268273693937680078, 9.435014892018870551809125194259, 10.02014088901205016153959024391, 10.69257906171311018407543072522, 11.51523840311068410902391198781