L(s) = 1 | + (−1.05 + 1.82i)3-s + (−2.29 − 2.29i)5-s + (−1.21 − 0.324i)7-s + (−0.722 − 1.25i)9-s + (3.76 − 1.00i)11-s + (3.23 − 1.59i)13-s + (6.59 − 1.76i)15-s + (3.99 − 2.30i)17-s + (−2.52 − 0.675i)19-s + (1.86 − 1.86i)21-s + (1.62 − 2.82i)23-s + 5.49i·25-s − 3.27·27-s + (7.35 + 4.24i)29-s + (−2.29 − 2.29i)31-s + ⋯ |
L(s) = 1 | + (−0.608 + 1.05i)3-s + (−1.02 − 1.02i)5-s + (−0.457 − 0.122i)7-s + (−0.240 − 0.417i)9-s + (1.13 − 0.304i)11-s + (0.896 − 0.442i)13-s + (1.70 − 0.456i)15-s + (0.969 − 0.559i)17-s + (−0.578 − 0.154i)19-s + (0.407 − 0.407i)21-s + (0.339 − 0.588i)23-s + 1.09i·25-s − 0.630·27-s + (1.36 + 0.788i)29-s + (−0.411 − 0.411i)31-s + ⋯ |
Λ(s)=(=(416s/2ΓC(s)L(s)(0.894+0.446i)Λ(2−s)
Λ(s)=(=(416s/2ΓC(s+1/2)L(s)(0.894+0.446i)Λ(1−s)
Degree: |
2 |
Conductor: |
416
= 25⋅13
|
Sign: |
0.894+0.446i
|
Analytic conductor: |
3.32177 |
Root analytic conductor: |
1.82257 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ416(175,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 416, ( :1/2), 0.894+0.446i)
|
Particular Values
L(1) |
≈ |
0.881162−0.207430i |
L(21) |
≈ |
0.881162−0.207430i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+(−3.23+1.59i)T |
good | 3 | 1+(1.05−1.82i)T+(−1.5−2.59i)T2 |
| 5 | 1+(2.29+2.29i)T+5iT2 |
| 7 | 1+(1.21+0.324i)T+(6.06+3.5i)T2 |
| 11 | 1+(−3.76+1.00i)T+(9.52−5.5i)T2 |
| 17 | 1+(−3.99+2.30i)T+(8.5−14.7i)T2 |
| 19 | 1+(2.52+0.675i)T+(16.4+9.5i)T2 |
| 23 | 1+(−1.62+2.82i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−7.35−4.24i)T+(14.5+25.1i)T2 |
| 31 | 1+(2.29+2.29i)T+31iT2 |
| 37 | 1+(1.94+7.25i)T+(−32.0+18.5i)T2 |
| 41 | 1+(0.391+1.46i)T+(−35.5+20.5i)T2 |
| 43 | 1+(−9.48+5.47i)T+(21.5−37.2i)T2 |
| 47 | 1+(−3.31+3.31i)T−47iT2 |
| 53 | 1−2.94iT−53T2 |
| 59 | 1+(0.115−0.432i)T+(−51.0−29.5i)T2 |
| 61 | 1+(9.70−5.60i)T+(30.5−52.8i)T2 |
| 67 | 1+(2.48+9.27i)T+(−58.0+33.5i)T2 |
| 71 | 1+(−0.740+2.76i)T+(−61.4−35.5i)T2 |
| 73 | 1+(−0.0928−0.0928i)T+73iT2 |
| 79 | 1−9.86iT−79T2 |
| 83 | 1+(−7.31+7.31i)T−83iT2 |
| 89 | 1+(−0.299+0.0801i)T+(77.0−44.5i)T2 |
| 97 | 1+(−10.4−2.79i)T+(84.0+48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.04823725858822607369646022939, −10.41920653769642286780641991448, −9.211335582021300161942124886012, −8.694546916532034878357193294004, −7.51802109944824909244174218691, −6.20285775000030003852951985239, −5.15718228912658967021477227562, −4.21355349344332133793831872910, −3.52264078700980140143633112988, −0.75337283437286606855203255331,
1.34090913028294365264397895072, 3.20654746479519048605492654851, 4.18211051137595158519395161278, 6.11503426397286570506355882238, 6.52888165923534069801078321931, 7.36711846417605559124128374940, 8.248629509426752744620285507818, 9.507187117675753230510456349638, 10.67563056866435722994192540003, 11.49233747922562781589600924967